
Generating and Analyzing Program Call Graphs
using Ontology

Ethan Dorta and Yonghong Yan
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, North Carolina, USA

{edorta, yyan7}@uncc.edu

Chunhua Liao
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, California, USA

liao6@llnl.gov

Abstract—Call graph or caller-callee relationships have been
used for various kinds of static program analysis, performance
analysis and profiling, and for program safety or security
analysis such as detecting anomalies of program execution or
code injection attacks. However, different tools generate call
graphs in different formats, which prevents efficient reuse of
call graph results. In this paper, we present an approach of
using ontology and resource description framework (RDF) to
create knowledge graphs for specifying call graphs to facilitate
the construction of full-fledged and complex call graphs of
computer programs, realizing more interoperable and scalable
program analyses than conventional approaches. We create a
formal ontology-based specification of call graph information
to capture concepts and properties of both static and dynamic
call graphs so different tools can collaboratively contribute to
more comprehensive analysis results. Our experiments show that
ontology enables merging of call graphs generated from different
tools and flexible queries using a standard query interface.

Index Terms—Callgraph, ontology, knowledge graph, resource
description framework, program analysis

I. INTRODUCTION

Program call graphs [1], [2] have been used to represent
the calling relationships between procedures or subroutines
in a computer program. Each node of the graph represents
a procedure and each edge indicates the caller and callee
relationship of two procedures. A cycle in a graph indicates
recursive procedure calls. Call graphs, also known as call
multigraphs, are control flow graphs that can be used for
program analysis tasks that rely on knowing the control flow
of a program execution, e.g. inter-procedure data flow analysis
and optimization. Call graphs themselves can be used for
analysis such as finding procedures that are never called,
detecting anomalies of program execution, or code injection
attacks.

Call graphs can be created by different tools (e.g. compiler,
profiling, or tracing tools), and contain different types of
information (e.g., static or dynamic call graph). For program
analysis and execution analysis, it is often required to construct
and combine multiple call graphs and to query and analyze
the call graphs. Existing graph languages such as DOT and
GraphML that are used for call graph description focus on
graph visualization and layout, but are not designed for
composing multiple similar graphs as needed for call graphs.
They are also not designed for graph query and searching.

With these languages, when a call graph becomes large, it is
hard to read to find useful information even after visualization.

In this paper, we present our approach of using ontology
and Resource Description Framework (RDF) for specifying
call graphs to facilitate the construction of full-fledged and
complex call graphs of computer programs, and to support
query and search of call graphs using tools. Leveraging the
interoperability feature of ontology, call graphs specified as
knowledge graphs would be naturally and highly composable,
thus facilitating combining dynamic and static call graphs
of a program into one graph. Ontology also provides its
own semantic query language, SPARQL, for retrieving and
manipulating data stored in RDF. The language and its tools
would enable more advanced searching and analysis of the
call knowledge graphs for caller-callee relationships, its con-
textual information, as well as whole program analysis. With
RDF, the caller and callee (graph nodes) and the caller-callee
relationships (graph edges) in conventional call graphs become
more extensible than using DOT or GraphML when it needs
to include additional attributes for program analysis.

The contributions of this paper include: 1) introducing the
notion of knowledge graphs for program analysis starting with
call graph construction; 2) designing a formal ontology-based
specification of call graph using Resource Description Frame-
work (RDF) aiming for interoperability and composability for
constructing call graphs of complex software packages, and
for query and searching knowledge call graph using tools; 3)
implementation and demonstration of call graph construction
from both static and dynamic call graphs. The evaluation is
performed using the Quicksilver proxy application to show the
advantage of using RDF-based call graphs.

For the rest of the paper, Section II provides the background
and motivation. Section III describes the formal ontology-
based specification of call graphs. Section IV includes our
implementation details for creating static and dynamic call
graphs. Section V provides evaluation study. In Section VII,
we study the related work, and we conclude the paper in
Section VIII.

II. BACKGROUND AND MOTIVATION

Call graphs or caller-callee relationships have been used for
various kinds of static program analysis, performance analysis

and profiling, and for program safety or security analysis
such as detecting anomalies of program execution or code
injection attacks. Depending on the purpose, different kinds
of call graphs, e.g. static or dynamic call graphs, and with
and without calling context information can be constructed.
For example, static interprocedural program analysis relies on
static call graphs, and often requires calling-context combined
with data-flow analysis. Such analysis and optimizations in-
clude functions within or across compilation units, program
partitioning and re-organization to improve the proximity of
frequently called functions and usage of data, coalescing of
global variables, unreachable code elimination, interprocedural
constant or copy propagation and set propagation, interproce-
dural pointer alias analysis, interprocedural unreachable code
and store elimination, etc.

A. Challenges of Generating and Using Call Graphs

Call graphs represent the high-level code structure of a
program and can be used for information or knowledge ex-
traction from software systems [3]. Constructing a full-fledged
call graph can be a challenging task for several reasons. 1)
Dynamic call graphs represent the caller-callee relationships
obtained during the program execution, and it is often used
for performance profiling. Static call graphs represent every
possible caller-callee relationships of a program and it is
often used for static program analysis. It is also often needed
that these two types of graphs can be combined together
for more advanced analysis and performance optimization. 2)
Call graphs can also be enhanced to include calling context
information, thus making a call graph to be context-sensitive
for more advanced program analysis tasks. However, adding
calling-context is often problematic since it requires more
data-oriented tracing of program execution that could signif-
icantly slow down program execution and generate a large
amount of tracing data. 3) With languages that feature dynamic
dispatch of polymorphic class methods or functions to call at
run time, such as in Java and C++, computing a static call
graph precisely is complicated, e.g. requiring alias analysis [4].
4) Constructing a complete call graph of a software package
that depends on other packages and libraries could also be
challenging as the call graphs from multiple packages need to
be combined and composed. In summary, the complexity of
call graphs often requires the merging of results generated by
different tools and using different methodologies.

Existing approaches to generating call graphs and usage of
call graphs have been focusing on analysis or visualization
by humans, or to be combined with program analysis of the
compiler. Different tools generate call graph results in ad-hoc
formats. It is challenging to programmably use call graphs
generated by existing tools. For example, the text-format DOT
flat graph used for storing call graphs is not programming
friendly, such that searching or querying for a caller-callee
relationship requires parsing of text file. Embedding in the
call graph both caller-callee relationships as graph edges and
nodes, and call context information as attributes of edges and

nodes makes the call graph complicated and hard to sort and
query.

In many communities, standard guidelines and recom-
mended best practices are being developed to make scien-
tific data Findable, Accessible, Interoperable, and Reusable
(FAIR) [5]. We believe that the same principles can be
applicable for the domain of program analysis, including call
graph analysis. Our approach explores the "knowledge" or
"ontology" aspects of the software structure and its high-level
information, and aims to design a more interoperable structure
and interface of software call graphs.

B. Ontology and Knowledge Graph

An ontology [6], [7] is a formal specification for explicitly
representing knowledge about types, properties, and interrela-
tionships of the entities in a domain. Defining ontologies has
many benefits, including providing a common vocabulary to
represent and share domain concepts and enhancing interop-
erability and reusability of heterogeneous datasets.

An ontology can form a complex graph to model any kinds
of relationships between entities. The resulting graphs are
often called knowledge graphs. Each node in the knowledge
graph represents a concept or instance, and each edge carries
a property indicating the relations between the two nodes
it connects. For example, there can be two nodes named
“Animal" and “Cat" indicating two concepts (or classes). An
“is-a" edge between them means that one is a subclass of the
other. An edge labeled “rdf:type" denotes that a node is an
instance of a node representing a class. A simple data model
called Resource Description Framework (RDF) is used to store
an ontology (or its equivalent knowledge graph) as triples, in
a form of (subject, predicate, object). For instance, (“Cat",
is-a, “Animal") states that Cat is a subclass of Animal.

A knowledge graph can be queried using a standard RDF
query language named SPARQL. An example query in List-
ing 1 can be used to find all individual cats located in a city
called Dublin. rdf:type is a standard RDF property to link a
resource as an instance to its class. :locatedIn is the property
to link a resource to its location. ?<identifier>, e.g. ?s in the
list, can be considered as a variable declaration or reference.

Listing 1: Example SPARQL Query
SELECT ?s
WHERE { ?s rdf:type :Cat .

?s :locatedIn :Dublin }

Many ontologies have been developed to enhance inter-
operability and reusability of data in different domains. For
example, DBpedia [8], [9] is an ontology extracted from
Wikipedia to connect datasets. Schema.org [10] is designed
to improve the interoperability of web data. Yue et al. de-
veloped ontology-based program analysis [11], though the
work is limited to representing language constructs. Liao et
al. explored ontologies to enhance domain-specific language
implementations [12]. Pattipati et al. [13] built an extensible
framework for ontology-based advanced program analysis.
Thus ontology and the existing tools in this domain provide

an innovative direction for software program analysis. In this
paper, we experiment the use of this methodology for call
graphs to evaluate its feasibility and explore its potential.

III. DESIGN AND SPECIFICATION OF CALL GRAPHS USING
ONTOLOGY

In many research communities, researchers are establish-
ing standard guidelines and recommending best practices to
make scientific data Findable, Accessible, Interoperable, and
Reusable (FAIR) [5]. We believe that the same principles can
be applicable for the domain of program analysis. Briefly,
Findability means that data can be found online, typically
through indexing in search engines. Accessibility indicates
that data can be retrieved directly or via an approval process.
Interoperability means that data follows standards. Finally,
reusability denotes that the context of data generated (meta-
data) is documented so it can be compared to or integrated
with other datasets.

Following the FAIR principles, we are designing a call
graph ontology to enable interoperable and scalable call graph
analysis results. This ontology is a supplemental component
of the ongoing HPC Ontology [14] effort aimed to implement
FAIR principles for training datasets and AI models in the
high-performance computing (HPC) domain, with a focus on
Machine Learning driven program analysis and optimizations.
Currently, the HPC Ontology has a core component and a
few supplemental components. The core component captures
essential concepts and properties related to an experiment
using some input data and generating output data. Supplemen-
tal components provide more details for associated software,
hardware of the experiments, as well as different types of input
and output data (such as performance profiling datasets and
machine learning models).

A. Ontology for Call Graphs

We define a few concepts in the call graph ontology,
including CallGraph, Function, MainFunction and CallSite. An
instance of CallGraph may include a set of Function instances.
MainFunction is a subclass of Function to represent the main
entry functions. CallSite is the location within source code
denoting a call to a function. The concepts and instances can
be linked using a set of properties as shown in Table I.

Function calls are represented either by direct properties
among functions or through an intermediate concept called
call sites. The latter allows more precise modeling of caller-
callee relationships. The hpc:calls property associates two
functions by indicating one function calls the other. Like-
wise, hpc:calledBy inverts this relation by associating a callee
function upstream with its caller. Functions can be similarly
linked through call sites they are involved with as well using
the hpc:callSite and hpc:upstreamCallSite properties, with
hpc:callSite being used to indicate a function is the caller of a
callsite and hpc:upstreamCallSite indicates a function is called
by a call site. For call sites, the hpc:srcFunc and hpc:destFunc
properties indicate the caller of the call site (the function in

TABLE I: Major Properties of the Call Graph Ontology

Property Data-type Description

Basic Properties

hpc:wasDerivedFromSoftware xsd:anyURI URI of the software/benchmark
hpc:name xsd:string Name of the thing (e.g. function or call graph)
hpc:alternateName xsd:string An alias for this item
hpc:mangledName xsd:string The mangled name of a function
hpc:description xsd:string Short description
hpc:function xsd:anyURI link a call graph to its function instance
hpc:sourceFile xsd:anyURI link a function to its source file name
hpc:lineNumber xsd:integer link a function to its line number
hpc:isPartOf xsd:anyURI link a library function to its parent library

Pairs of Edges for Callsite

hpc:callSite xsd:anyURI link a function to its call site
hpc:srcFunc xsd:anyURI link a call site to its source function (caller)
hpc:destFunc xsd:anyURI link a call site to destination function (callee)
hpc:upstreamCallSite xsd:anyURI link a callee to its call site
hpc:calls xsd:anyURI link a caller to a callee
hpc:calledBy xsd:anyURI link a callee to a caller

Provenance Information

hpc:version xsd:string Version Number of a call graph
hpc:contributor xsd:anyURI Contributors of the call graph
hpc:submitter xsd:anyURI Who submits this piece of info.
hpc:submitDate xsd:dateTime Date of submission

Profiling information for dynamic call graph

hpc:numOfCalls xsd:integer Number of times the function is called
hpc:inclusivePercentageTime xsd:float Execution time percentage inclusively
hpc:inclusiveTime xsd:float Execution time in s/ms/... inclusively
hpc:exclusivePercentageTime xsd:float Execution time percentage exclusively
hpc:exclusiveTime xsd:float Execution time in s/ms/... exclusively

which the callee function is invoked) and the callee of the call
site, respectively.

Functions and call sites may have both static and dy-
namic properties. The static properties describe informa-
tion about the source code and program structure, such
as source locations and other debug attributes. The dy-
namic properties are relating to information extracted from
a timed run of the given program. The integer prop-
erty hpc:numOfCalls simply lists the number of times
each function is called or each call site is reached. For
the dynamic properties hpc:inclusive(Percentage)Time and
hpc:exclusive(Percentage)Time, the inclusive and exclusive
refer to whether or not the times spent in callee functions
also are factored into the measurement. For the performance
tool gprof, inclusive and exclusive response to cumulative and
self times/percentages, respectively.

For functions defined in the C/C++ standard libraries, the
call graph ontology can be modified to provide instances for
both the functions and their associated libraries. We have
generated nodes for the functions in the C standard library
and imported them into the ontology. For example, math
functions like hpc:sqrt and hpc:abs are provided, as well
as their corresponding library hpc:cmath. We also provide
a concept of hpc:StandardLibrary so hpc:cmath is specified
to be an instance of hpc:StandardLibrary. These entities can
be helpful when creating queries skipping standard library
functions used in user codes.

Figure 1 shows an example call graph using the proposed
call graph ontology. It includes information from both static

Fig. 1: An Example Call Graph Visualization

and dynamic analysis. The callgraph instance (cg001), derived
from a benchmark software, provides links to two functions:
func001 [main] and func002 [add]. The two functions are
linked together by a Callsite node that indicates the caller/-
callee relationship between them. Specifically, there is an
outgoing hpc:callSite link from func001 to the call site node
(cs001) and an outgoing link (hpc:destFunc) from the call
site node to func002, indicating that func001 calls func002
through a call site. The hpc:numOfCalls property, derived
through dynamic analysis, also indicates that func002 (and
cs001) was called five times. This callgraph in RDF forms
provides detailed information about caller-callee relationships,
function attributes, call attributes, etc, thus allowing for more
advanced analyses.

B. Universal URI Design

In order for data to be highly accessible for universal
analysis and comparison, it is important that each entity of
the RDF-based callgraph to be uniquely identified as a single
resource, namely the need for a universal resource identi-
fiers (URI). URI’s point a retrievable (resolvable) resource
if possible and follow a distinct pattern to allow readability
for node identifiers. Although this is difficult to do when
working with local files, code bases that are reflected in a
remote (and web accessible) repository can use the repository
URL to create semantic linked data. The designed static pass
allows for providing a base URI to the graph generator that
then generates URI’s for each resource, utilizing the file path
(assuming it is congruent in the remote codebase as well), a

fragment with either the function name or a compound name
indicating a call site between two functions.

For consistency with function names, the Itanium C++ ABI1

is used as the standard for mangling. The reasons are two-
fold; cross-referencing composable data, such as information
between two different compiler tool-chains, requires a con-
sistent identification scheme. As both LLVM/Clang and GCC
adhere to this scheme, mangled function names can be used to
reliably merge data produced from either compiler. Secondly,
qualified (unmangled) names can introduce characters such
as asterisks, ampersands, colons, and whitespace that are not
valid in a URI fragment [15]. A partial mangling of the
name would therefore still be required. Itanium mangling does
not support singular unqualified identifiers that contain non-
alphanumeric characters (excluding underscores) and all other
C++ constructs are mangled to conform to this as well.

The design of URI has to consider the toolchain involved
in generating call graphs. For example, the LLVM linker does
not allow symbols to be defined more than once in a bitcode
unit, so the fragment defining the name of a function must
be unique for every URI. As this name fragment is the end
of the URI for functions, it is guaranteed to be unique and
clashes will not occur. These function names form a natural
key in the URI, allowing for an established pattern [16] for
creating URI’s using concatenation. It is suggested that for
version control repositories, the chosen base URI should be
reflecting a given commit or version of a codebase rather than
a default link to the latest version, as this can change between

1http://itanium-cxx-abi.github.io/cxx-abi/abi.html

updates and reduce the underlying integrity of the knowledge
graph.

As an example, we would like to refer to
the updateTrajectory function within the
LLNL/Quicksilver repository on GitHub, defined
in the src/CollisionEvent.cc file. As linking to a
specific commit is desired, ad9bf04 will be used.
The base URI for this example would then be
https://github.com/LLNL/Quicksilver/tree/ad9bf04/.
Mangled, the updateTrajectory function becomes
_Z16updateTrajectoryddR11MC_Particle.
Combining the file path as part of the URL and the
mangled function name as a URI fragment gives a final URI
of https://github.com/LLNL/Quicksilver/tree/ad9bf04/src/
CollisionEvent.cc#_Z16updateTrajectoryddR11MC_Particle.

IV. IMPLEMENTATION

This section describes how the proposed call graph ontology
can be used in practice. Our implementation leverages existing
call graph generating tools and enhances them to collect more
program information and generate RDF-based call graphs.
For static call graph generation, we improve an LLVM call
graph analysis pass to produce a static call graph in RDF
format. For dynamic call graph generation, we modify the
gprof2dot profiling analysis tool to produce a dynamic
call graph, leveraging the capability of gprof2dot to analyze
profiling information from profiling tools such as gprof and
perf. We use the Blazegraph database 2 for storing and merging
dynamic and static call graphs. This database also supports
query and analysis of call graphs using SPARQL.

A. Static Call Graph

The Clang/LLVM compiler provides a callgraph compiler
pass to produce call graphs in the DOT format via its
opt command. However, this pass does not provide enough
information to build a knowledge graph: the DOT format
is unsuitable for storing structured data, and more detailed
information about the functions and the corresponding call
sites (such as file location and line numbers) is not present,
making it unusable for more detailed querying.

We developed a custom LLVM pass that iterates over each
defined function in the provided bitcode file, identifying call
instructions within the function bodies, and extracting debug
information from each call that can then be used to build an
RDF knowledge graph. This process is run by compiling the
individual files of the collective program into LLVM bitcode
files with debug information, linking all files together with
llvm-link, and passing the linked file to LLVM opt to
run a custom-built pass. The extracted information is serialized
into RDF format by the Redland librdf C library3.

2https://blazegraph.com/
3https://librdf.org

B. Dynamic Call Graph

For dynamic call graphs, we leverage GNU gprof 4 to
produce text-formatted call graphs. We modified the Python
library gprof2dot 5 to produce the RDF-formatted dynamic
graph of a program. gprof2dot accepts many popular
program profiling formats including gprof, callgrind, and perf,
which it internally parses into a uniform structure to generate
DOT graphs. The script was modified to extract this informa-
tion in order to build a knowledge graph using the rdflib
Python library.

As the chosen profiling software (gprof) does not provide
complete call site information, we instead opt to use a different
type of node called an AggregateCallsite. This node type does
not guarantee all location information will be supplied (such
as line, column, or file number) but that there is information
describing performance statistics of a given call between two
functions.

C. Merge Dynamic and Static Call Graph

Merging the two produced knowledge graphs allows for
a more complete data set and enables new queries to be
performed that can take into account both timing and source
information. As programs compiled with GCC and Clang
contain slightly different symbol tables and debug information,
merging the two graphs requires logic to identify items in the
different graphs that refer to the same entity. The merging
process consists of a series of SPARQL queries run against
both graphs, which are then processed by a Python script to
be properly merged and written back to disk.

As LLVM and GCC use the same mangling scheme, identi-
fying functions across the knowledge graphs can be trivial. For
call sites, a more sophisticated merging approach is necessary
since the generated dynamic callgraph does not have complete
call site information. A merge candidate query is run that
attempts to match each aggregate call site with a precise call
site (obtained from static analysis) by checking 1. whether or
not this caller-callee pair only occurs once within the program
or 2. whether or not the pair occurs once within the given line.
On the occasion that there has been shifting in line numbers
due to differences between pre-processing, the corresponding
call sites will be sorted and paired up by line number ordering
rather than direct line number.

A merge cannot occur if either: 1) the call sites occur
multiple times per line such as a = callY()+callY (); and 2)
the dynamic analysis contains a function or function invo-
cation that was not present in the static analysis (such as a
compiler generated function). The remaining unmerged nodes
are collected via multiple queries to ensure that there is no
duplication.

As an example, let <F(A, static info), F(B, static info),
CS(A→B, 10, 13), CS(A→B, 11, 13), CS(A→B, 11, 17)>
describe a static analysis result in which F(A, static info) rep-
resents a function named "A" with static info and CS(A→B,

4https://sourceware.org/binutils/docs/gprof/
5https://github.com/jrfonseca/gprof2dot

https://github.com/LLNL/Quicksilver/tree/ad9bf04/
https://github.com/LLNL/Quicksilver/tree/ad9bf04/src/CollisionEvent.cc#_Z16updateTrajectoryddR11MC_Particle
https://github.com/LLNL/Quicksilver/tree/ad9bf04/src/CollisionEvent.cc#_Z16updateTrajectoryddR11MC_Particle

11, 13) represents a static call site where A calls B on line 11
and column 13.

Then, let <F(A, dynamic info), F(B, dynamic info),
ACS(A→B, 10), ACS(A→B, 11)> represent the dynamic
analysis result (note the loss of column numbers due to gprof
results), with ACS being an aggregate call site.

In merging, the static call site occurring on line 10 can be
merged with its corresponding dynamic "aggregate" call site as
there is a pairing between them. However, the merge fails for
the two call sites on line 11, which do not pair with the single
aggregate call site returned by gprof for line 11. Thus, there is
no merge for these callsites. The resulting final merged graph
is then <F(A, static + dynamic info), F(B, static + dynamic
info), CS(A→B, 10, 13), CS(A→B, 11, 13), CS(A→B, 11,
17), ACS(A→B, 11)>.

Note that the merged node at line 10 becomes a Callsite
after merging Callsite and AggregateCallsite. To maintain all
original call graph information, we don’t merge call sites
at line 11, although they could be merged into a single
AggregateCallsite with static information lost. This is a design
choice with trade-offs so we can easily enable the merge with
information loss, if users prefer.

V. EVALUATION

We evaluate our implementation using the Quicksil-
ver 6 proxy application. Quicksilver is developed at the
Lawrence Livermore National Laboratory that comprises a
large toolchain for performing particle simulations. Overall,
Quicksilver comprises over 9000 lines of code and 841 defined
functions. The static graph results in a densely populated call
graph, making it an ideal candidate for testing queries against
the program. We evaluate in two aspects: 1) how the call
graph ontology enables merging of both dynamic and static
call graphs into one, and 2) how our implementation enables
scaling-down large call graphs using SPARQL queries. For
hardware, the machine used is an AMD Ryzen 5 2500U CPU
running at 2 Ghz, using Xubuntu Linux with 16 GB of RAM.

A. Integrating Heterogeneous Call Graph Information

1) Static call graph: The Quicksilver source code is ana-
lyzed using the given call site analyzer by using LLVM bitcode
and linking into a single file. This bitcode file is then fed to
the static call graph generator to produce the RDF call graph.
In total, the resulting RDF knowledge graph of Quicksilver
has just over 100,000 triples (edges or attributes). These
triples provide function attributes such as source locations
of definitions as well as relations between functions. More
specifically, the resultant graph models all possible calls any
function within the program can make, regardless of whether
or not the call would actually happen in an execution.

2) Dynamic call graph for a sequential execution: The
dynamic call graph is produced by first compiling the whole
program to produce the binary executable with gprof profiling
option enabled. This building step can be done together with

6https://github.com/LLNL/Quicksilver

the LLVM compilation step for generating static call graphs,
or completed separately. The Quicksilver program was then
executed with -nSteps=1 to do a single full run-through.
On the aforementioned machine, this run took 49.8 seconds.
The execution produces gprof profiling output and we then run
our enhanced gprof2dot script to process the gprof output and
produce the RDF-based dynamic call graph, which contains
just over 54,000 triples.

3) Merged (heterogeneous) call graph: For the final merge
query, the two separate static and dynamic call graphs were
loaded into Blazegraph, where the merge took place from a
script that accessed Blazegraph via the SPARQL endpoint
exposed by the software. The triples were then stored back
onto disk using the rdflib. The resultant merged call
graph has almost 125,000 triples On the machine listed
above, the merge query took 2 minutes and 24 seconds for
Blazegraph. As a demonstration of the merging mechanism,
the function cycleTracking in src/main.cc calls
MC_Particle_Buffer::Receive_Particle_Buffers
on line 273, which has a corresponding node in the static
call graph. The dynamic call graph has one and only one
node describing the same interaction, and the two call sites
are able to be merged. On the other hand, the function
Tallies::CycleFinalize calls the overloaded operator
qs_vector<CellTallyTask>::operator[](int)
twice on line 80 of src/Tallies.cc as shown below (broken
into multiple lines for clarity)

_cellTallyDomain[domainIndex]._task[0].Add(
_cellTallyDomain[domainIndex]._task[

replication_index
]

);

The two related static call sites are not able to merge with
the dynamic call site describing the line, so both have to be
included separately in the final graph.

B. Flexible and Scalable Analysis and Query of Call Graphs

An ontology can be evaluated based on its ability to answer
common questions asked within the domain it intends to
describe. These questions are often called competency ques-
tions. Several competency questions that arise in performance
analysis that are related to function call and call graph analysis
are listed as follows:

• Q1: Which functions take more than a certain amount of
time to run?

• Q2: Which functions are called at least a certain number
of times, or called from at least a certain number of
places?

TABLE II: Properties of Generated Call Graphs

Graph Nodes Functions Edges Size (KB) Exe. Time

Static 11,949 3,454 101,553 11,476 5.632 sec
Dynamic 7,268 2,563 54,089 4,968 15.237 sec
Merged 13,830 3,807 124,620 15,988 2 min 24.422 sec

• Q3: Which functions are not from a standard or specific
library?

• Q4: Which functions are directly or indirectly called by a
given function, traversing the call graph down to a given
depth?

• Q5: What are all possible callpaths to a given function?
Most importantly, the ontology must provide intuitive query

design; queries designed with the ontology should be human-
readable and understandable by individuals familiar with the
domain. The ability for our ontology to successfully answer
these questions, as well as provide scalable call graph analysis,
are evaluated in a series of queries against the Quicksilver
software using Blazegraph.

Function A (bound as ?functionA) refers to
the class method ParticleVaultContainer
::collapseProcessing defined on line 198 of
src/ParticleVaultContainer.cc, which is only called 12 times
throughout the program and sits near the top of the call graph.
Function B (bound as ?functionB) refers to rngSample,
a psuedo-random number generator defined on line 23 of
src/MC_RNG_State.hh, and is called 9,856,095 times during
the sample run.

1) Query for the functions that take more than a certain
ratio of the total execution time: Timing function execution
is one of the most basic tasks required by a profiling tool.
The query in Listing 2 shows an example to achieve this.
The query first finds the total time of the main function.
Then it finds all functions (the main function included) that
takes more than a given ratio of the total time. This query
essentially returns a list of hot functions and their execution
times.

Listing 2: Find Hot Functions
SELECT ?function ?time WHERE {
?main hpc:name "main" .
?main hpc:inclusiveTime ?totaltime .

?function rdf:type hpc:Function .
?function hpc:inclusiveTime ?time .
FILTER (?time/?totaltime >= ?ratio)

}

The query is constructed by initially finding the overall
execution time of the program and binding it to a variable
named ?totalTime. This is done by searching for entities
that have the name (specifically using the ontology property
hpc:name "main", and then extracting the runtime attached
to the hpc:inclusiveTime property. All other functions
within the graph are then retrieved by matching their node type
and their running times are similarly extracted. To retrieve
functions that satisfy the condition, the SPARQL FILTER
construct is used that accepts more complex expressions,
including supporting arithmetic. The ratio between the total
execution time and function execution time is computed and
only functions that exceed the bound variable ?ratio are
returned. The values of ?ratio are shown along with the
results in Table III, with Functions and Runtime referring to

the number of results, specifically functions that satisfy the
query, and the execution time of the query, respectively.

2) Query for functions that are called more than 100 times,
or called in more than 10 sites: The following query accesses
data merged from two call graphs, leveraging both dynamic
(call count) and static (callsite count) information together.
Heterogeneous call graph information, such as the merged
dynamic and static call graphs of Quicksilver, is able to be
accessed intuitively through the ontology, demonstrating the
support for interoperability provided by the ontology.

Listing 3: Find functions called either over 100 times or in 10
different places

SELECT DISTINCT ?func WHERE {
{

?func rdf:type hpc:Function .
?func hpc:numOfCalls ?num .
FILTER (?num >= 100)
} UNION {

{
SELECT (COUNT(?callsite) AS ?

callsites) ?f WHERE {
?callsite rdf:type hpc:Callsite .
?callsite hpc:destFunc ?func .

} GROUP BY ?func
}
FILTER (?callsites >= 10)

}
}

Table IV shows the result of the query. To retrieve func-
tions that satisfy either of the conditions, a SPARQL UNION
statement nests two queries and returns results if at least one
subquery does. The number of calls against a function can be
accessed simply by matching a triple that contains a function
and a hpc:numOfCalls predicate and retrieving the value,
and a FILTER statement is used to only get those with values
above 100. Retrieving the number of callsites that invoke a
function is done by running a subquery that gets all callsites
that invoke the function, aggregating the results using the
SPARQL COUNT function and the GROUP BY construct. The
resulting value is passed to the parent query, and a FILTER
construct is used again to only give functions who are involved
in more than ten callsites.

3) Query for functions that are called over 100 times and
are not a part of the standard libraries: Filtering results
based on them being a part of the current program can help

TABLE III: Query 1 Results

?ratio Functions Runtime

0.1 14 127 msec
0.05 17 110 msec
0.01 68 134 msec

TABLE IV: Query 2 Results

Functions Runtime

777 418 msec

pare down data to be more relevant to a given task and is
a necessary component of providing scalable analyses. This
query can be extended in different ways to identify and isolate
groups of functions or callsites for more in-depth analyses.

Listing 4: Find functions called over 100 times that are not
from standard library functions

SELECT ?function WHERE {
?function rdf:type hpc:Function .
MINUS {

?function hpc:isPartOf ?lib .
?lib rdf:type hpc:StandardLibrary .

}

?function hpc:numOfCalls ?num .
FILTER (?num > 100)

}

This simple query utilizes the ontology explicitly
in how it encodes standard libraries, such as the
hpc:isPartOf property for being a member of a library
and hpc:StandardLibrary for containing standard
library functions. The SPARQL MINUS construct takes
embedded queries and continues only if the internal query
is not satisfied, specifically the condition that the function is
a standard library function in the case of the above query.
Issues with how gprof profiles software prevents this query
from returning meaningful results, which is discussed in
section VI.

4) Create a partial call graph from root with depth D: The
SPARQL CONSTRUCT functionality provides the most direct
support of scalability by allowing for queries to generate new
graphs from pre-existing data. This can be used to integrate
new analyses within a knowledge graph through a query
engine or produce scaled-down call graphs that only look at
given aspects of a program, which can then be used for more
in-depth analysis.

Listing 5: Construct Call Subgraph from a Specified Function
as the Root with Specified Depth (depth=3 or going through
3 callsites)

CONSTRUCT {
?function1 hpc:callSite ?callsite1 .
?callsite1 hpc:destFunc ?function2 .
?function2 hpc:callSite ?callsite2 .
?callsite2 hpc:destFunc ?function3 .
?function3 hpc:callSite ?callsite3 .
?callsite3 hpc:destFunc ?function4 .

} WHERE {
?function1 hpc:callSite ?callsite1 .
?callsite1 a hpc:Callsite .
?callsite1 hpc:destFunc ?function2 .
OPTIONAL {
?function2 hpc:callSite ?callsite2 .
?callsite2 a hpc:Callsite .
?callsite2 hpc:destFunc ?function3 .
OPTIONAL {
?function3 hpc:callSite ?callsite3 .
?callsite3 a hpc:Callsite .
?callsite3 hpc:destFunc ?function4 .

}
}

}

The SPARQL CONSTRUCT statement works by accepting a
query on the bottom half of the statement (within the WHERE
clause) and a general graph outline on the top. The query
on the bottom returns bound variables that satisfy conditions
similar to a SELECT query, which are then passed to the
upper part of the statement to generate triples described in the
statement for each result as part of a new knowledge graph.
This graph generation contrasts the row results returned from
a SELECT query.

Query 4 works by manually matching steps in the overall
call graph by going downwards through each function and
call site. The SPARQL construct OPTIONAL is used within
the inner queries to allow for the possibility of a function that
does not have any downstream call sites. Otherwise, functions
that were not a given depth away from the root node and did
not have any child calls would not be matched, resulting in an
incomplete call graph. Table V shows the results of the query
as the depth is increased (by nesting OPTIONAL statements).
The number of triples (specifically edges linking together call
sites and functions as they are discovered) are provided and
increase as the depth does, along with the runtime of each
query.

5) Generate a partial call graph showing all callpaths to a
given function: This query utilizes property paths introduced
in SPARQL 1.1, which allows for matching arbitrary-length
paths across nodes rather than individual triples [17].

Listing 6: Construct Call Subgraph from a Specified Function
Upwards For All Callpaths

CONSTRUCT {
?incomingNode ?link ?pathNode .

} WHERE {
?incomingNode ?link ?pathNode .
FILTER (?link = hpc:destFunc || ?link =

hpc:callSite)
?pathNode (hpc:destFunc|hpc:callSite)* ?

targetFunction .
}

The above query uses arbitrary length property paths to
identify all possible paths consisting of call sites and func-
tions to a given target function, specifically by testing edges
whose destination nodes must be either of the two. The
discovery is ran recursively, successively identifying endpoints
of these paths and reconstructing links upwards to the top
of the call graph. This is achieved by first identifying two
nodes that are attached by either an hpc:destFunc or
hpc:callSite edge. The destination node of this edge

TABLE V: Query 4 Results

Depth Triples Runtime

1 22 72 msec
2 42 75 msec
3 68 114 msec
4 76 118 msec

is then tested to see whether or not there is a path con-
taining only hpc:destFunc and hpc:callSite edges
between the destination node and the intended target func-
tion, with the asterisk operator indicating the path can be
of possibly zero length (allowing the target function to be
within the graph). The initial triple containing the original
source and destination functions is added to a knowledge
graph by using a CONSTRUCT query. As both of the ini-
tial source and destination nodes have a path to the tar-
get function, the combination of all triples generated by
these possibilities will result in a call graph that contains
all possible call paths to the target function. Table VI
lists attributes of the resultant graphs with target functions
ParticleVaultContainer::collapseProcessing
and rngSample, providing the number of functions, call
sites, and overall edges in the generated graphs, alongside the
running time for each query.

VI. DISCUSSION

The HPC Ontology for call graphs provides a flexible
interface for realizing complex queries over a call graph,
allowing for sophisticated analysis. Specifically, these queries
are written in such a way that an individual with understanding
of performance analysis and basic SPARQL could reliably
understand the goal of a given query. Moreover, the merged
data of the dynamic and static call graphs can be exploited to
create more comprehensive queries, as shown with Query 2
utilizing both callsite frequency from static analysis and call
count from dynamic analysis.

Query 4 currently requires manual nesting of OPTIONAL
statements to create a subgraph of a specified depth. Although
SPARQL 1.1 introduced the property paths feature to match
paths along nodes rather than individual triples, these paths
are of arbitrary length (a demonstration of arbitrary length
path matching via property paths can be seen in Query 5).
Graph databases may provide custom SPARQL extensions to
implement this functionality, such as Blazegraph providing a
custom SPARQL SERVICE7, but these were not explored to
keep the queries implementation-agnostic.

For Query 5, there is not a strict relation between function
and callsite counts as a function may invoke the same function
numerous times. This causes a diamond pattern in the call
graph where multiple callsites are generated by a single
function, resulting in more than one callsite for a caller-callee
pair.

As gprof profiles via statistical sampling, functions with
smaller runtime have unpredictable timing results and are
often incorrect. gprof also cannot profile functions that come

7https://github.com/blazegraph/database/wiki/PropertyPaths

TABLE VI: Query 5 Results

Function Functions Callsites Triples Runtime

Function A 6 8 16 137 msec
Function B 17 44 80 185 msec

from shared libraries (including standard library functions),
restricting dynamic information to user-defined functions only.
This renders an incomplete dynamic call graph, which can
be problematic in applications that span multiple libraries.
Query 3 was not able to have meaningful results due to this
restriction, as libc is dynamically linked.

HPC software often employs parallel and distributed mod-
els within its applications. Further research into this area
includes identifying software candidates that can instrument
non-sequential applications by producing a consumable call
graph, as well as adapting the HPC Ontology to adequately
describe non-serial execution. Profilers such as totalView8 are
proprietary, while stand-alone parsers that can interface with
other, more in-depth call graph formats are required to build
knowledge graphs.

With the wide range of different languages used in HPC
applications, support for more languages is crucial for adoption
of this profiling method. Preliminary support for static call
graph generation of languages other than C/C++ that can be
compiled to LLVM is present, but proper generation of both
static and dynamic call graphs are to be explored in a future
paper. As such, completion of the profiling tools and ontology
are ongoing research.

VII. RELATED WORK

SARIF (Static Analysis Results Interchange Format) is a
structured JSON schema that also aims to encode output from
analysis tools and provide a uniform format for storage. This
format is useful for being utilized in debugging tools and
reporting results to users but the JSON format used does
not naturally induce a graph from the data, preventing useful
queries from being made against the output. Likewise, the
main focus on static analysis excludes dynamic analyses (in
this case, run time call graphs), preventing proper composition
and merging. Our approach defines a formal knowledge rep-
resentation of call graphs using ontology. The results can be
easily analyzed using standard SPARQL queries for advanced
analysis.

There are some prior efforts of leveraging ontology tech-
niques in program analyses. Yu et al. [18] converted JAVA
program AST into an ontology format in order to find bugs
represented using SWRL (semantic Web rule language) rules.
PATO [11] is a framework used to explore declarative program
analysis using Prolog programs operating on ontology triples.
However, it only encodes input programs into RDF triple
formats into a C programming ontology and does not define
how the analysis output results should be stored. OPAL [13]
is an extensible framework for ontology-based program anal-
ysis leveraging external knowledge for libraries and domains.
SPARQL queries are used to implement a set of analyses
including stream safety analysis and divide-by-zero analysis.
However, the call graph ontology used by OPAL is a primitive
and static one since it does not encode callsites nor dynamic
information.

8https://totalview.io/

VIII. CONCLUSION

Interoperable and scalable program analyses are widely
needed to enable a wide range of applications in performance
analysis and optimizations. In this paper, we have proposed an
ontology-based approach to enable interoperable and scalable
call graph analysis. We defined a set of standardized terms
to capture concepts and properties of both static and dynamic
call graphs so different tools can collaboratively contribute
to more comprehensive analysis results. Our experiments also
show that ontology enables flexible queries of the call graph
information using a standard query interface.

In the future, we plan to extend the HPC ontology to support
more types of program analyses such as alias analysis, side
effect analysis, and dependence analysis. The existing call
graph ontology can also be extended to support multi-threaded
programs and more programming languages. Finally, we are
interested in using deep learning to enable natural language
queries over RDF knowledge graphs.

ACKNOWLEDGEMENTS

This work is supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Program.
Prepared by LLNL under Contract DE-AC52-07NA27344
(LLNL-CONF-838827). This material is also based upon work
supported by the National Science Foundation under Grant No.
1833332 and 2015254.

REFERENCES

[1] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy, “Constructing the
procedure call multigraph,” IEEE Transactions on Software Engineering,
vol. 16, no. 4, pp. 483–487, 1990.

[2] A. Lakhotia, “Constructing call multigraphs using dependence graphs,”
in Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of programming languages, 1993, pp. 273–284.

[3] K. Sartipi and H. Safyallah, “Dynamic knowledge extraction from
software systems using sequential pattern mining,” International Journal
of Software Engineering and Knowledge Engineering, vol. 20, no. 06,
pp. 761–782, 2010.

[4] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” in Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 1997, pp. 108–124.

[5] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne et al., “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[6] S. Staab and R. Studer, Handbook on ontologies. Springer Science &
Business Media, 2013.

[7] M. Uschold and M. Gruninger, “Ontologies: Principles, methods and
applications,” The knowledge engineering review, vol. 11, no. 2, pp.
93–136, 1996.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web.
Springer, 2007, pp. 722–735.

[9] P. N. Mendes, M. Jakob, and C. Bizer, “Dbpedia: A multilingual cross-
domain knowledge base.” in LREC. Citeseer, 2012, pp. 1813–1817.

[10] R. V. Guha, D. Brickley, and S. Macbeth, “Schema.org: evolution of
structured data on the web,” Communications of the ACM, vol. 59, no. 2,
pp. 44–51, 2016.

[11] Y. Zhao, G. Chen, C. Liao, and X. Shen, “Towards ontology-based
program analysis,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[12] C. Liao, P.-H. Lin, D. J. Quinlan, Y. Zhao, and X. Shen, “Enhancing do-
main specific language implementations through ontology,” in Proceed-
ings of the 5th International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing, 2015,
pp. 1–9.

[13] D. K. Pattipati, R. Nasre, and S. K. Puligundla, “Opal: An extensible
framework for ontology-based program analysis,” Software: Practice
and Experience, vol. 50, no. 8, pp. 1425–1462, 2020.

[14] C. Liao, P.-H. Lin, G. Verma, T. Vanderbruggen, M. Emani, Z. Nan,
and X. Shen, “Hpc ontology: Towards a unified ontology for managing
training datasets and ai models for high-performance computing,” in
2021 IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC). IEEE, 2021, pp. 69–80.

[15] T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uniform resource
identifier (uri): Generic syntax,” Internet Requests for Comments, RFC
Editor, STD 66, January 2005, http://www.rfc-editor.org/rfc/rfc3986.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3986.txt

[16] I. D. Leigh Dodds, Linked Data Patterns: A pattern catalogue for
modelling, publishing, and consuming Linked Data, 2012.

[17] S. Harris, A. Seaborne, and E. Prud’hommeaux, “Sparql 1.1 query
language,” W3C Recommendation, vol. 21, 2013.

[18] L. Yu, J. Zhou, Y. Yi, P. Li, and Q. Wang, “Ontology model-based static
analysis on java programs,” in 2008 32nd Annual IEEE International
Computer Software and Applications Conference. IEEE, 2008, pp.
92–99.

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt

	Introduction
	Background and Motivation
	Challenges of Generating and Using Call Graphs
	Ontology and Knowledge Graph

	Design and Specification of Call Graphs Using Ontology
	Ontology for Call Graphs
	Universal URI Design

	Implementation
	Static Call Graph
	Dynamic Call Graph
	Merge Dynamic and Static Call Graph

	Evaluation
	Integrating Heterogeneous Call Graph Information
	Static call graph
	Dynamic call graph for a sequential execution
	Merged (heterogeneous) call graph

	Flexible and Scalable Analysis and Query of Call Graphs
	Query for the functions that take more than a certain ratio of the total execution time
	Query for functions that are called more than 100 times, or called in more than 10 sites
	Query for functions that are called over 100 times and are not a part of the standard libraries
	Create a partial call graph from root with depth D
	Generate a partial call graph showing all callpaths to a given function

	Discussion
	Related Work
	Conclusion
	References

