
HPCFAIR: Enabling FAIR AI for HPC
Applications

Gaurav Verma∗
gaurav.verma@stonybrook.edu

Murali Emani†
memani@anl.gov

Chunhua Liao‡
liao6@llnl.gov

Pei-Hung Lin‡
lin32@llnl.gov

Tristan Vanderbruggen‡
vanderbrugge1@llnl.gov

Xipeng Shen§
xshen5@ncsu.edu

Barbara Chapman∗
barbara.chapman@stonybrook.edu

∗Stony Brook University, Stony Brook, NY 11794, USA
†Argonne National Laboratory, Lemont, IL 60439, USA

‡Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
§North Carolina State University, Raleigh, NC 27695, USA

Abstract—Artificial Intelligence (AI) is being adopted in
different domains at an unprecedented scale. A significant
interest in the scientific community also involves leveraging
machine learning (ML) to effectively run high performance
computing applications at scale. Given multiple efforts in
this arena, there are often duplicated efforts when existing
rich data sets and ML models could be leveraged instead.
The primary challenge is a lack of an ecosystem to reuse
and reproduce the models and datasets. In this work, we
propose HPCFAIR, a modular, extensible framework to
enable AI models to be Findable, Accessible, Interoperable
and Reproducible (FAIR). It enables users with a structured
approach to search, load, save and reuse the models in
their codes. We present the design, implementation of
our framework and highlight how it can be seamlessly
integrated to ML-driven applications for high performance
computing applications and scientific machine learning
workloads.

Index Terms—HPC, FAIR, AI models, datasets, neural
networks

I. INTRODUCTION

While Machine Learning (ML) and Artificial Intelli-
gence (AI) has disrupted every computing industry, the
challenges in quickly accessing, reproducing the results,
or reusing the research components have become over-
whelming for researchers. The massive data produced by
research communities such as experimental datasets, AI
models constitute a rich repository of artifacts. Imple-
menting sound data management principles is the need
of the hour to leverage the rich repositories.

One formal proposal laid out by a consortium Fu-
ture of Research Communications and e-Scholarship
(FORCE11) define the four foundation pillars, namely
FAIR, that stands for data artifacts to be Findable,
Accessible, Interoperable and Reproducible. The FAIR
principles are collectively proposed and adopted by the
universities, industry, funding agencies, and scholarly

publishers. It dictates the publication of datasets and
AI/ML models and associated research components mak-
ing them adhere to FAIR principles. The advantages
are manifold in that it helps end-users such as domain
scientists or application developers to adopt and easily
integrate data artifacts into their applications for reuse.
This significantly cuts down the application time de-
velopment and support reproducing their experiments.
The emergence of the frameworks’ development [1]–[5]
to address these challenges demonstrates a conspicuous
necessity for applying FAIR [6] data guiding principles
driving better data management and stewardship.

Here, we have concisely summed the FAIR data
principles (shown in Table I) to recognize their potentials
to drive innovations among the scientific computing
community. Here onward, for brevity, we will express
AI/ML models and related components as “data objects.”

Adhering to the previously explained FAIR principles,
we propose a framework, HPCFAIR, to assist the high
performance computing and science communities com-
prehend the relationship between models, datasets, and
data objects. The overarching goal of this framework is
to implement FAIR principles for ML-driven HPC. With
the APIs provisioned, users can query for datasets and
models with metadata, deploy them in their application
and run them without the need to worry about the
software support and the need to build a model from
scratch. It helps to explore models that are trained and
tuned for specific tasks; if not available, the user can save
them in a central repository for future reuse.

HPCFAIR empowers researchers to explore the
research methodologies, metrics databases, varying
datasets, and novel learning techniques. It enables re-
searchers with a framework for pipeline development that

Principle Description

Findable (F) F1. Data objects (defined by R1 below) are described
with rich metadata

F2. Metadata clearly and explicitly include the identifier
of the data objects it describes

F3. Enable mechanism to find AI models by rich
associated metadata

F4. Data objects are served in a searchable resource

Accessible (A) A1. Data objects stored are retrievable by their unique
identifier.

A2. Communication protocol to retrieve data objects is
open, free, and universally implementable.

A3. Access to data objects requires authentication and
authorization, where necessary.

A4. Metadata is accessible even when the data object
is no longer available

Interoperable (I) I1. Data objects use a formal, accessible, and shared
language for information description.

I2. Data objects are interoperable from one format to
another.

I3. Data objects include qualified references to other
data objects.

Reproducible (R) R1. Metadata (of the data object) is extensively de-
scribed with high fidelity.

R2. Data objects are served with a public and accessible
data usage license.

R3. metadata adheres to domain-relevant community
requirements.

TABLE I: FAIR Principles

refers to codification and automation of stages to produce
an AI model. It may consist of multiple sequential
steps performing tasks like data loading, preprocessing,
model training, including deployment. Also, it renders
them a unified platform to optimize the pipeline using
tools or compilers like TVM [7] and TensorRT [8].
Notwithstanding the proposed framework’s capability to
support the generic ML use cases, we primarily focus on
tailoring it to suit the large-scale HPC workload.

The main contributions of this paper are summarized
as follows:
• It presents a detailed analysis of existing efforts to

help FAIRify AI models.
• The proposed work introduces our framework,

HPCFAIR, to enable reusable and reproducible AI
models.

• It highlights the capabilities of the proposed frame-
work in pipeline development and design space
exploration with a detailed design and API archi-
tecture.

• Finally, this work evaluates the functionality with
standard AI models and use cases from both HPC
and the scientific machine learning communities.

The remainder of the paper is organized as follows:
Section II presents the related work in this area, com-
paring existing state-of-the-art frameworks. Section III
describes the internal design and architecture of the

proposed framework. Section IV and V discuss the evalu-
ation and present use cases reinforcing FAIR principles to
scientific applications. Section VI provides a discussion
concluding our work and potential future steps.

II. RELATED WORK

The advancement to promote FAIR principles in the AI
universe has burgeoned in the recent past. We extensively
studied the existing state-of-the-art frameworks and have
identified and overcome any gaps in our proposed frame-
work. We first briefly describe them , compare their
features in Table II and provide our analysis in Section
II-G.

A. MLCube

MLCube [9] by MLCommonsTM is a containerized
interface to machine learning models and datasets. It
provides open-source runners capable of running on local
machines, cloud servers, or Kubernetes clusters. Being
in its infancy, MLCube supports tasks like dataset down-
load and training. Users can also create containerized
images, for their models, provided they have the dataset,
code, and docker files. The generated MLCube can
be configured using mlcube_cookiecutter APIs.
It provides YAML-based configuration files that support
defining tasks and additional hyperparameter options as
runtime flags.

B. DLHub

Data and Learning Hub for Science (DLHub) [10] is
a cloud-hosted learning system designed to enable the
publication of models with descriptive metadata, persis-
tent identifiers, and flexible access control. It packages
models into portable containers, enabling low-latency,
distributed serving of these models on various heteroge-
neous platforms. It implements command-line interface
(CLI) and software development kit (SDK) support to
store, discover, and publish models. DLHub provides
optimizations as batching and memoization that enhance
the inference performance. To assure that all operations
are performed by authenticated and authorized users,
DLHub utilizes Globus authentication mechanism.

C. Collective Knowledge

Collective Knowledge Framework (CK or
cKnowledge) [1] provides unified APIs, command-line
interfaces, meta-descriptions, and general automation
actions to organize and manage research projects
as a database of AI components. The customizable
program pipeline with software detection plugins and
the automatic installation of missing packages enables
AI components like models, datasets, compilers, tools
from varying vendors to build and run on unalike
platforms. The modular CK approach has successfully
automated benchmarking, auto-tuning, and co-designing

Category Feature Supported
Data
Object

MLCube DLHub CK MLflow HuggingFace TFHub TorchHub HPCFAIR

Findable

Search
Capability

Dataset NA NA NA NA Yes Yes NA Yes

Model NA Yes NA Yes Yes Yes Yes Yes

Metadata In-
formation

All NA Yes Yes Only
Models

Only Datasets
and Models

NA NA Yes

Accessibility
Options

Dataset API API API/CLI NA GUI/API GUI/API NA API

Model API GUI/API API/CLI API/CLI GUI/API GUI/API GUI/API API

Accessible APIs
Support

All NA Python Python,
JSON

Python,
R, Java,
REST

Python Python Python Python

Format
Conversion

Dataset NA NA NA NA Yes NA NA Ongoing

Model NA NA NA NA Yes NA NA Yes

Interoperable Domain
Support

All Generic Generic
and
Scientific

Generic Generic NLP Generic Generic Generic,
HPC and
Scientific

Offering as
Individual
Component

All NA Limited Limited Limited Only Datasets
and Models

Only
Datasets
and
Models

Only
Models

Yes

Reproducible Train and In-
ference Sup-
port

Model Train Inference Both Both Both Both Both Both

Pipeline De-
velopment
Support

All NA NA Yes Limited Yes Yes Limited Yes

*NA: Not Applicable; GUI: Graphical User Interface; API: Application Program Interface; CLI: Command Line Interface; All: model, dataset,
custom ML libraries; limited: not applicable to all the data objects; NLP: Natural Language Processing; Generic: industrial ML applications

TABLE II: Comparison of the existing state-of-the-art frameworks

software and hardware for AI. It is also being used
to reproduce results from top-tier conferences such as
ASPLOS, CGO and Supercomputing.

D. MLflow

MLflow [11] is an MLOps platform intended to
streamline machine learning development, experimen-
tation, and productization. Classified into several au-
tonomous components such as tracking, projects, mod-
els, and registry, it can be collectively employed to
log runtime information, package supporting tools, and
provide a centralized store and APIs to manage the
entire lifecycle of MLflow models. The lightweight
APIs offered by MLflow can be utilized with any
existing machine learning application or libraries like
TensorFlow, PyTorch, and XGBoost. It presents support
for notebooks, standalone applications, and cloud, along
with Docker containers.

E. Hugging Face

Hugging Face [12] offers Transformer models and
datasets as open-source libraries that equip developers

with abstraction layers to store, load, and distribute
pre-trained NLP models like BERT. The Transformer
API is powered by transformer architecture under the
hood that scales with training data and model size and
facilitates efficient parallel training and captures long-
range sequence features. It contains over 2000 pre-trained
and fine-tuned models. The hub offers user interface and
command line features to load and upload models with
associated metadata.

F. Tensorflow and PyTorch Hub

Tensorflow Hub (TFHub) [13] is a platform for
distributing, discovering, and reusing machine learning
components as self-contained Python modules in Ten-
sorFlow (TF). A module and pre-trained weights can be
reused to retrain across other related and similar tasks
assisting transfer learning. TFHub provides modules in
various domains like text, video, image, etc., in formats
like saved models, TF.js, TFLite, and Coral. Once ex-
ported to the disk, the modules are self-contained and can
be used as an interface to preprocess the user input. The
modules are applied to build the part of the TF Graph.

PyTorch Hub [14] is an API and workflow em-
ployed to publish pre-trained models to a GitHub reposi-
tory by adding a Python script that contains functions to
load a pre-trained model. These functions, alias “entry-
points,” define the input and the output of a model. Like
other AI model hubs, PyTorch advances research within
machine learning community by allowing researchers
and developers to leverage plug-and-play models. It pro-
vides an interface to load models and pre-trained weights.
As of today, according to the PyTorch Hub’s official
GitHub repository, they don’t support hosting pre-trained
weights. The users with pre-trained weights need to host
them correctly themselves.

G. Comparing State-of-the-art Frameworks

Table II compares different state-of-the-art frameworks
proposed recently to implement a resolution to facilitate
FAIR AI, as briefly described above. We analyzed them
to understand support for multiple features and have
attempted to distinguish the uniqueness amongst each.

While frameworks like TFHub and Hugging Face
offer search capabilities for datasets and models, none
other offer such capabilities for datasets. Except for
Hugging Face, other frameworks currently do not
support model interoperability. This is a barrier when
researchers want to compare the performance of various
frameworks on heterogeneous backends. Also, offering
each AI component as a data object is critical. While
CK does offer support for packaging and reproducing
the entire result, individual component reuse in pipeline
support is limited. TFHub and Hugging Face offer
this support only for the datasets and the models, not
custom libraries. Whereas, PyTorchHub supports only
models. The innate nature of Hugging Face means
that it is extensively built for models used in appliations
from natural language processing (NLP) domain. This
prevents it from being portable across other domains
such as HPC and scientific applications. Among all the
existing frameworks, DLHub alone supports scientific
workloads explicitly. Similarly, TFHub or PyTorchHub
are specific to the TensorFlow-based or Torch-based
models. In addition to the discussed frameworks, we
also studied various publicly available model zoos from
GluonCV [15], Caffe [16], and ONNX [17]. However,
most of them lacked the support for datasets and data
objects, maintaining only models. Such constraints pro-
pose a need for a more generic platform assisting re-
searchers, especially in the HPC and machine learning
communities.

Our framework HPCFAIR aims to address the afore-
mentioned limitations: provide support for model inter-
operatbility, search capabilities for datasets and models,
packaged to run seamlessly and integrate into any appli-
cation while catering for HPC and science domains.

III. PROPOSED FRAMEWORK: HPCFAIR

In this section, we will be discussing our solution to
help enable FAIRify AI models. Henceforth, we will
address our proposed approach as “HPCFAIR”. We first
detail how our solution addresses the FAIR principles.
Next, we present design architecture and the implemen-
tation details of HPCFAIR. Designing as a three-tier
architecture will enable us to implement each component
as an independent module with minimal dependencies
and is easily extensible to the other language APIs.

We modularize the storage of data objects’ metadata
enabling efficient findability. The indexed metadata al-
lows users to search for the required data objects based
on tags or keywords. We store the metadata in the JSON-
LD format to ensure that it can be accessed via open
and standard communication protocols like API calls.
In addition to models and datasets, we also provide
support to store user implemented custom modules in
a format that can easily be discovered, loaded, and em-
ployed in a pipeline. At the moment, we provide ONNX
support to convert the models. We are working towards
implementing checkpoint conversions for the selected
models. Also, while saving any new object, we check for
duplicate insertions based on primary keys, eliminating
any redundant information. We currently support access
to public data objects and present steps to access any
behind the login data objects. Similarly, while loading
any data object, we check for its existence in the cache.
In such scenarios, we provide users with either a reuse
option or newly force-load the data object. We aim to
incorporate authentication checks to ensure that access
is granted to only authorized users.

A. Design Overview

As shown in Figure 1, HPCFAIR has a front-end
connected to several components implementing tags-
based search, user notification, load and store of models
and datasets. It also contains a supportive component
(HPC Ontology) to provide metadata and an advanced
component to automatically synthesize workflows. These
two components are still under development and are not
within the scope of this paper.

From our detailed analysis of existing state-of-the-
art frameworks, we observed that MLCube, in its pre-
alpha stage of development, offers a perspective that is
easily extensible and obeys the “plug-and-play” philos-
ophy. Considering MLCube as a basis, we have further
implemented enhancements to bridge gaps in achieving
FAIR AI for HPC.

We developed our framework as a Python library for a
lightweight implementation. We will extend it to support
other languages such as C++, Java, etc. in the future.
Developers are provided with CLI support to discover
and load the required components. We store detailed

Fig. 1: HPCFAIR: The Proposed Architecture

information about each component in Github repositories
in the JSON-LD format. It helps us store a data object
and associated files, thus keeping the relationship among
them intact. Also, the JSON-LD format allows avenues
to be converted into a more efficient search data structure
which is our future direction. The requested information
is provided to the developers in the dictionary format
(key: value) that is easy to comprehend.

1) Serving models, datasets, and data objects: Dis-
cussing storage of a model, a dataset, or an individual
component, we consider storing the AI components and
the experiment’s metadata and runtime system config-
uration information. This will help the users to repro-
duce the results with added correctness. We employ

MLCube to store the neural network-based models as
containerized images. To store the ML models, we pickle
them, i.e serialize to the disk as an MLCube. It offers
mlcube_ccokiecutter support to readily generate
a containerized image given code, data, and docker file.
Instead of tightly coupling the dataset and the model,
we create a containerized image of the model alone,
facilitating the pipeline development. A containerized
image consists of YAML-based configuration files with
information about the model and any associated com-
ponents such as runtime libraries. A uniqueness check is
performed to ensure that there is no duplicate submission.
Understanding that HPC and scientific workloads might
be public or restricted in nature, we have authentication

mechanism in our plan. The future plan is to authenticate
users for access to particular data objects, thus serving
private data objects along with public data objects. The
authentication and authorization should be performed for
all the actions on any restricted data object.

2) Tags-based search: As shown in Figure 1, a user
can perform “tags-based search” that inherently retrieves
information from the enriched metadata. The metadata
information is categorized into incorporating components
to support efficient and low-latency fetch. Based on
the information presented by the search action, a user
can further load discovered datasets, models, or any
other components. When a load request is placed, an
inspection is performed to verify if that component exists
in the cache directory. In that case, a duplicate fetch is
avoided by reusing the existing component. A user can
still “force” load, deleting the current component and
downloading it anew. This is more to provide the caching
behavior to reduce the time-to-respond. Further, we store
metadata broadly classified as models, datasets, and data
objects distinctly from each other. The modularity allows
an efficient search and facilitates user queries, create,
update, read, and delete (CRUD) operations.

3) Pipeline development support: Researchers often
want to compare their results against various hand-tuned
libraries or custom modules like cost functions. Also,
it is not profitable to re-implement the same algorithm
from scratch for the same experiment or create a pipeline.
In such scenarios, reusability of data objects to achieve
an experiment pipeline is highly critical. We enable
developers to serve and load data objects on demand.
The versioning of data objects allows having multiple
versions of the same data object. A ranking system based
on usage makes it possible to rank them in a longer
run. The detailed metadata of these data objects permits
usability specific to applications. In the subsequent sec-
tions, we would discuss the encoding of datasets, models,
and individual data objects like ML libraries, workflows
(experimentations, scripts, etc.) and the granularity of the
metadata information stored.

B. Metadata

An AI project consists of many components. We have
classified these components into the following categories:
dataset, models, individual libraries, supporting scripts
like pre and post-processing, associated experiments or
workflows, and runtime system configuration. As shown
in listing 1, all information is stored into the JSON-
LD format using hierarchical key-value pairs. The keys
include standard metadata keywords such as @id and
@title. We also provide additional keys with a prefix
of hpc:.

For example, every dataset is uniquely identified by
its value of the @id key. The hpc:tags are used to

manage information like version, license, and tasks. It
is a dynamic field permitting users to add user-defined
properties. We further store metadata describing the as-
sociated files and workflows or experiments to reproduce
the research submissions. Additionally, to support cita-
tions and locate relevant publications, we save citations
as a linked data field.

1 {
2 "@id": "http://example.org/DA000001",
3 "@title" : "MNIST",
4 "@description" : "The MNIST dataset",
5 "hpc:submitter" : "admin",
6 "hpc:tags" : ["Version" : 0.1, "License" : "MIT",

"tasks" : "img classification"],
7 "hpc:associatedFiles" : "pre_process_mnist",
8 "hpc:associatedExpt" : "expt_img_classification",
9 "hpc:citation" : "@article{lecun2010mnist}",

10 }

Listing 1: Selected fields from the dataset metadata

Similarly, for the models as presented in Listing 2, we
collect the model’s submitted format which may be be
a saved_model, onnx, or h5 formats, and so on.
The hpc:isTunable flag informs the user whether the
model is tunable during the runtime or not. Furthermore,
hpc:hyperParams consists of the parameters that can
be passed as arguments to the model during runtime.
Metadata for machine learning frameworks and model
types enables an efficient search and enhances the frame-
work’s usefulness. We also present acceleration support
and available metrics to the user. It lets the user choose
metrics of interest instead of evaluating all.

1 {
2 "@id": "http://example.org/MD000001",
3 "@title" : "SSD_MobileNet_v2",
4 "hpc:modelFormat" : "pb",
5 "hpc:isTunable" : "false",
6 "hpc:hyperParams" : "",
7 "hpc:machineLearningFramework" : "tensorflow",
8 "hpc:modelType" : "SSD",
9 "hpc:acceleratorSupport" : "true",

10 "hpc:metrics" : "throughput,latency",
11 "hpc:tags" : {"category":"object detection", "

dataset":"COCO", "License" : "MIT"}
12 }

Listing 2: Selected fields from the model metadata

Another significant component is experiment or
workflow-related metadata as depicted in Listing 3. It
describes the files or prerequisite actions required as
part of the experiment. The linked workflow files are
the command files needed to set up the environment
or perform an action. In cases where a whole project
package is submitted, a workflow can be leveraged to
reproduce the results. To standalone execution, we have
fields to record the required software and hardware, in
addition to the dataset and model used as part of the
experiment. From experience, we have seen that it is
critical to have system configuration details to reproduce
the expected results. Hence, we provide the functionality
to store them.

1 {
2 "@id" : "http://example.org/EX000001",
3 "@url" : "https://github.com/userX/repoY/XPlacer-

Adapter.md"
4 "hpc:associatedWorkflow" : "workflow_file_ex000001

",
5 "hpc:reqSoftwares" : ["scikit-learn","pandas","skl

2onnx","onnxruntime","hyperopt"],
6 "hpc:reqHardware" : "nvidia-GPU",
7 "hpc:sysConfig" : ["OMP_NUM_THREADS":"4","

data_format":"NHWC","kmp_affinity":["granularity":
"fine,compact,1,0"]]

8 "hpc:associatedDataset" : ["AWS_data.csv","
IBM_data.csv","Merged_data.csv"],

9 "hpc:associatedModel" : ["modelLearnerGUI.py","
offline_trainer.py"],

10 }

Listing 3: Selected fields from the experiment metadata

C. Enabling FAIR Principles for AI Models

We have adopted Python API-based methodology to
serve, discover, and load the AI models. To incorpo-
rate nearly all the available AI frameworks, we serve
machine learning models encoded as Pickle and deep
neural networks based models in various formats includ-
ing saved_format (Protobuf, .pb), ONNX,
.h5, .pth and .pkl. Following are a few primary
model APIs that are offered to apply FAIR guidelines to
the models:
• model.list_models() returns a list of avail-

able models.
• model.get_metadata(model_name)

returns the metadata as a dictionary for a given
model or list of models.

• model.search(keyword) returns the list of
models matching the regex.

• model.run("train", model_name,
dataset_path, **kwargs) trains the passed
model on the given dataset with the parameters set
passed as args. It saves the trained model locally in
the provided path.

• model.run("inference", model_name,
dataset_path, **kwargs) runs the infer-
ence using the provided model and the dataset with
passed hyperparameters.

• model.convert(from_format,
to_format, src_path, dest_path)
supports converting model from one format to
another; saves it locally.

To serve the model, the user needs to create a con-
tainerized image and push it into the Github repository as
per the guidelines provided by MLCube1. This approach
to serve models allows the users to package models
in any available format. To facilitate interoperability
among DNN models, we provide API support to convert
models from one format to another. Currently, we support
only ONNX-TensorFlow inter-conversion and PyTorch to

1https://mlcommons.github.io/mlcube/tutorials/create-mlcube.html

ONNX conversion. In the near future, we would like
to support checkpoint conversion from Tensorflow to
PyTorch and vice-versa.

Additionally, we offer YAML-based config files in
the containerized images to support training schedules
and hyperparameters portability. It is a challenge to
scale the training automatically, and we are exploring
how an automated hyperparameter optimization (HPO)
framework can address this.

D. Enabling FAIR Principles for Datasets

Alike enabling FAIR principles for the AI models,
HPCFAIR API design also provides basic functionality
to serve, discover, or load datasets. Below are few APIs
that make the pipeline development experience seamless:
• dataset.list_datasets() returns the list of

datasets available publicly or behind the login.
• dataset.get_metadata(dataset_name)

returns the metadata as a dictionary for a given
dataset or list of datasets.

• dataset.search(keyword) returns the list of
datasets matching the regex.

• dataset.list_supporting_files(
dataset_name) returns a list of pre-processing
or any script associated with the dataset with its
description and input arguments.

• dataset.load_dataset(dataset_name,
src_path, dest_path, **kwargs)
returns the path of fetched dataset.

• dataset.apply(dataset_name,
data_path, script_name, **kwargs)
applies the script from
list_supporting_files above in-place to
the dataset.

While serving the dataset, we maintain the association
and versioning to distinguish between various experi-
ments. There are three possibilities while fetching the
dataset. The dataset download script is executed to down-
load the dataset in the destination folder passed as an
argument if it is public. If any particular dataset requires
user login (e.g., the Imagenet dataset), we present the
user with a set of steps needed to acquire that. Lastly, if
a dataset is private, we are working on provisioning an
authentication mechanism where a user can log in and
access the private dataset hosted on our framework.

Furthermore, before fetching the dataset afresh, HPC-
FAIR checks for the cached image of the same dataset
to avoid duplicate requests. Finally, the support to ap-
ply pre-processing scripts or any other related scripts
to the dataset in-place reduces memory consumption.
The passed arguments to the pre-processing scripts like
num_threads to parallelize the execution makes the
whole process efficient. As a future direction, we are
working on representing the datasets using a standard

https://mlcommons.github.io/mlcube/tutorials/create-mlcube.html

in-memory representation framework like Apache Arrow
[18]. It combines the benefits of columnar data structures
with in-memory computing along with the performance
benefits like maximized cache locality, pipelining, and
support to the SIMD instructions. Currently, we are
replicating these performance gains using APIs.

E. Managing Experiment or Workflows

In addition to the models and datasets, HPCFAIR
also supports to enable FAIR principles for experiments
or workflows. Often, researchers submit repositories to
reproduce results. We decompose that data into data
objects if feasible, else contain the information as such
and serve the scripts to execute those experiments. We
also provide the environment setup files enabling users
to recreate the execution environment. In this manner, a
developer can use the experiments as a sovereign module
in pipeline development.

IV. EVALUATION

To evaluate HPCFAIR for its compliance with FAIR
principles, we have conducted the following diversified
experiments. We have compared the results for correct-
ness in regards to the original experiments. Additionally,
we have demonstrated how the data objects’ reusability
and interoperability can further tune a model and achieve
an efficient software-hardware co-design system.

A. Evaluating Support for DNN models

To assess the HPCFAIR framework upon a funda-
mental use case, we consider experimenting with the
MNIST dataset [19]. The MNIST dataset consists of
60,000 examples of handwritten digits forming a test set.
The intention here is to replicate the experimentation by
MLCube 2, where they employ a simple neural network
to classify the earlier mentioned training set into ten
classes. In the original approach, the download and train
task is unified. In contrast, as shown in Listing 4, we
have decoupled them into two independent tasks to 1)
reuse the dataset, line 18 and 2) train the model, line
23. In the background, we use runners provided by
MLCube to run cubes on different platforms, including
docker and singularity. The parameter.yaml file contains
the hyperparameters that can be set during the task
execution. If not provided during the runtime, the default
hyperparameter values are used. As shown in lines 1-2 in
Listing 4, users can load the hpcfair_dataset and
hpcfair_model as modules. They can search for the
MNIST dataset and related models, as shown in lines 5
and 9. Further, the dataset and model can be loaded, and
the training task is run with the custom hyperparameters,
as shown in lines 18 and 7 respectively.

2https://github.com/mlcommons/mlcube examples/tree/master/mnist

1 >>> from hpcfair import hpcfair_model as model
2 >>> from hpcfair import hpcfair_dataset as dataset
3 >>>
4 >>>
5 >>> model.search("mnist")
6 [’mnist_model_us1’]
7 >>> model_mnist = model.load("mnist_model_us1")
8 >>>
9 >>> dataset.get_metadata("mnist")

10 [hpcfair_dataset.DatasetMetadata(
11 title=’mnist’,
12 description=’The MNIST dataset consists of

70,000 28x28 black-and-white images in 10 classes
(one for each digits), with 7,000images per class.
There are 60,000 training images and 10,000 test
images.’,

13 files=None,
14 supporting_files=pre_processing_mnist_0.py,
15 isTunable=’true’
16)]
17 >>>
18 >>> dataset.load_dataset("mnist")
19 "D:\\hpcfair\\data\\mnist.npz"
20 >>> dataset.apply("mnist","D:\\hpcfair\\data\\","

pre_processing_mnist_0",num_threads="4")
21 Successfully processed the dataset: python3

pre_processing_mnist_0.py --data=mnist.npz
num_threads=4

22 >>>
23 >>> model.run("train", model_mnist, "D:\\hpcfair\\data

\\mnist.npz", log_dir="D:\\logs")
24 Model successfully trained. Check logs directory for

more details.

Listing 4: Support for generic DNN-models

B. Evaluating Support for ML libraries

In another evaluation, we applied some machine learn-
ing algorithms, such as linear regression and logistic
regression, on the GPU runtime dataset [20] as inde-
pendent data objects. We performed a gradient-descent
with batch updates to predict GPU computation time. The
dataset includes 14 independent features and 241,600
rows. In this evaluation, we applied data processing
files on the dataset stored as dataset metadata. The
hyperparameters experimented with are learning rates
and convergence threshold.
• Search for the dataset
• Load the dataset
• Apply preprocessing steps as a script
• Search the ML libraries stored as data objects in the

pickle format
• Deserialize the ML libraries
• Provide hyperparameter values and train the

pipeline; experiment with multiple values
• Use the above model to predict GPU runtime based

on varying selected features.
Consequently, the resultant pipeline can be saved as

a readily reproducible pipeline, a data object, complying
with the FAIR principles.

C. Evaluating Reproducibility of Published Research

With proliferating research involving ML and DL, it
is essential to reproduce presented results with the least
effort. Effectuating these needs, we sought to produce

https://github.com/mlcommons/mlcube_examples/tree/master/mnist

the results from the Best Paper Award winner submit-
ted in PACT’17 by Chris Cummins et al. [21]. This
work introduces a novel framework DeepTune, proposing
heuristics predicting optimal mapping for heterogeneous
parallelism and GPU thread coarsening factors using
LSTM - a deep neural network.

The artifact submitted tightly depends on the CLgen
[22] version and has recommended Ubuntu and Python
versions. The containerized packaging of the HPCFAIR
facilitates the reproduction of the results with efficiency,
managing the installation of required dependencies. Also,
results achieved from the DeepTune have been con-
fronted with results from the state-of-the-art frameworks
from Grewe et al. [23] and Magni et al. [24].

D. Evaluating Support For Workflows

Ensuing is the evaluation revealing the support for the
workflows. Often, there are research submissions in the
form of packages where a sequence of steps needs to be
performed to set up the prerequisites for reproducibility.
One such example is where we evaluated HPCFAIR for
its efficacy to reproduce the results from Xplacer by Xu
et al. [25].

1 >>> from hpcfair import hpcfair_model as model
2 >>> from hpcfair import hpcfair_dataset as dataset
3 >>>
4 >>> model.search_workflows("xplacer")
5 [’XPlacer’]
6 >>> model.get_metadata("xplacer")
7 [hpcfair_model.ModelMetadata(
8 title=’XPlacer: A framework for Guiding

Optimal Use of GPU Unified Memory’,
9 description=’The goal is to decide which

memory placement policy is best for a given data
object...’,

10 files=None,
11 supporting_files=[’xplacer_wf1.sh’,’

xplacer_wf2.sh’,’xplacer_wf3.sh’],
12 isTunable=’true’,
13 stepsToRun=’xplacerRunFile.txt’
14)]

Listing 5: Support for workflow

As prerequisites, the experiment includes steps like
building the adapter, collecting the data-level and kernel-
level baseline data, merging two levels of baseline data,
labeling the merged data, and executing all variants
to decide the best-performing variants. The authors do
provide a sequence of steps and scripts to be executed to
achieve the above. As a solution, we transform them into
workflow scripts and serve the related details as metadata
in our database. These data objects are bundled together
as part of the containerized image. As shown in the
Listing 5, line 4-6, a user can search for an experiment
and associated workflow scripts. Additionally, a user
can view the brief description explaining the steps to
execute when projects are submitted as packages using
the corresponding metadata key.

E. Evaluating Support For Design Space Exploration

Lately, edge computing has received considerable at-
tention addressing the demand for faster Deep Learning
applications at edge devices. This has led to the develop-
ment of custom accelerators (TPU, GPU, FPGA), DNN-
compilers (TVM, TF-Lite), and frameworks (MxNet,
Pytorch, TF). However, recognizing a set of components
briefed above best suited for a DL task is strenuous.
Hence, a comprehensive framework capable of tackling
this issue is of paramount relevance for the researchers.
In a similar attempt, we have evaluated HPCFAIR to
reproduce the results [26] explaining its capabilities for
an efficient Design Space Exploration. A code snippet
for the same is presented in the Listing 6.

1 >>> from hpcfair import hpcfair_model as model
2 >>> from hpcfair import hpcfair_dataset as dataset
3 >>>
4 >>> model.search("resnet")
5 [’ResNet50_v2’]
6 >>> model_resnet50 = model.load("ResNet50_v2")
7 >>> data = dataset.load_dataset("img0.jpg", fromPath="

D:\\data")
8 >>>
9 >>> res_trt = model.run("inference", model_resnet50,

data, config="trt", log_dir="D:\\logs")
10 >>> res_tflite = model.run("inference", model_resnet50

, data, config="tflite", log_dir="D:\\logs")

Listing 6: Support for design space exploration

The evaluation includes inference using the Resnet50
v2 model trained on the ImageNet dataset [27]. We
make the inference pipeline efficient using optimizations
proposed by TFLite [28] and TF-TensorRT integrated
solutions [29]. The intention is to select the optimal
set of components as a pipeline, essentially improving
the inference efficiency based on metrics like power
consumption, throughput, and reduction in the model
size. HPCFAIR offers models, datasets, and frameworks
as data object readily integrable into the pipeline rather
than building from scratch. Therefore, instead of repeat-
ing from scratch, we adopted the plug-and-play method-
ology, comparing contrasting design space alternatives
fairly for each combination of the framework, accelera-
tor, and optimization engine.

F. Enabling FAIR Principles by HPCFAIR

We achieve FAIR guidelines to the AI applications and
data objects as listed below.
• Findable: The metadata associated with data is

registered and indexed in a searchable resource. The
metadata is assigned a globally unique and per-
sistent identifier. This enriched metadata enhances
searchability. A user will be able to search for
the components corresponding to the application’s
requirements.

• Accessible: The metadata is retrieved using a stan-
dardized communication protocol. It enables users

to publish or discover their AI components effi-
ciently. Further, access to the metadata is authorized
and authenticated wherever necessary.

• Interoperable: To manage interoperability, we have
represented the metadata using a formal language,
JSON-LD [30]. We support qualified references
among the stored metadata and data objects. Addi-
tionally, to maintain interoperability at the applica-
tion level, we serve metadata information concern-
ing individual supporting files associated with the
data object. We also support ONNX [31], equipping
application users to transform models from one
format to another.

• Reusable: The scientific community oftentimes in-
teracts among researchers to share and reuse crucial
components. We provide metadata with detailed
provenance to reuse the components to build an AI
pipeline by plugging the data objects. The loosely
coupled nature of the stored data enables efficient
development.

V. USE CASES REINFORCING SCIENTIFIC MACHINE
LEARNING APPLICATIONS

The purpose of HPCFAIR is not limited to the assessed
experiments and features’ support. Subsequent use cases
show how it can be used to apply FAIR principles to the
scientific community applications.

A. Democratizing Datasets and Models in Medical Re-
search

Part of the Cancer Distributed Learning Environment
(CANDLE) project, Uno [32] is a cancer deep learning
benchmark to predict drug response based on molecular
features of tumor cells and drug descriptors. The
training task on all data sources is a slow process. But
there are hand-tuned configurations that can speed up
the process for a single data source. The training and
inference can further be optimized using a pre-staged
dataset. This requires regeneration of the dataset for
varying configurations followed by data processing
and many other significant hyperparameters like
batch_size, cache, use_landmark_genes,
preprocess_rnaseq, no_feature_source,
shuffle, etc. The HPCFAIR enables democratization
by offering datasets and preprocessing scripts as data
objects. The access to the data objects is authenticated
to allow for only approved users to access them.

Further, the hyperparameters can be set using a
YAML-based configuration file information stored as
metadata. A trained model can be served to be reused
later for inference. This also would help with easy and
efficient porting of the models to diverse HPC systems
such as ThetaGPU, Polaris at ALCF, Summit, Frontier
at OLCF and Cori, PerlMutter at NERSC.

B. Predicting Cosmological Parameters Efficiently

CosmoFlow [33] is a scalable TensorFlow-based deep
learning framework to process sizeable 3D cosmology
datasets on a modern HPC platform. The model aims
to predict a couple of parameters from the distribution
of matter. The dataset consists of simulation boxes of
dark matter distribution. It is further augmented and
pre-processed. HPCFAIR stores the script that converts
the original input data from .npy to .tfrecord.
Additionally, it stores hyperparameters in a script. The
processed data can be stored as a versioned data object to
account for the efforts required to regenerate the dataset.

VI. DISCUSSION

With the proliferating AI research and development
among the HPC and scientific community, the need for
a platform to contain data objects in an easily find-
able, accessible format, enabling interconvertibility and
reusability among various frameworks, is indispensable.
HPCFAIR is an attempt in that direction. We have
endeavored to abridge gaps in different state-of-the-art
frameworks. We exhibited how HPCFAIR can assist
development from a baseline DNN experiment to individ-
ual ML Libraries as reusable components, extending to
reproduce research results and pipeline development. We
also demonstrated how it could be leveraged to expedite
and ease the design-space exploration.

HPCFAIR is our very first step in applying FAIR
principles to HPC applications. Where we support only
TF-ONNX interconversion, PyTorch-ONNX conversion
at present, the eventual intention is to implement check-
pointing conversion-like methodology. It will equip the
user with the ability to make TF-PyTorch models in-
teroperable. We also aim to have GUI providing better
search capabilities. Along with these, we are constantly
refining and implementing all the proposed features to
proffer the scientific community a unified platform that
will make the emerging workloads efficiently reusable
and portable. The current implementation of HPCFAIR
will be released as open source software on github once
we get necessary approvals from our organizations.

ACKNOWLEDGMENT

This research was funded by the Argonne Leader-
ship Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-
AC02-06CH11357. It was performed under the auspices
of the Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-826435).
This work is also supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Comput-
ing Program under Award Number DE-SC0021293.

REFERENCES

[1] “Collective knowledge framework,” June 2021. [Online].
Available: http://cknowledge.org/

[2] T. be Findable, T. be Accessible, T. be Interoperable, and
T. be Reusable, “Making nano data fair enough.”

[3] W. Wang, B. Bleakley, C. Ju, V. Kyi, P. Tan, H. Choi, X. Huang,
Y. Zhou, J. Wood, D. Wang et al., “Aztec: A platform to
render biomedical software findable, accessible, interoperable,
and reusable,” arXiv preprint arXiv:1706.06087, 2017.

[4] T. Weigel, U. Schwardmann, J. Klump, S. Bendoukha, and
R. Quick, “Making data and workflows findable for machines,”
Data Intelligence, vol. 2, no. 1-2, pp. 40–46, 2020.

[5] J. Wise, A. G. de Barron, A. Splendiani, B. Balali-Mood,
D. Vasant, E. Little, G. Mellino, I. Harrow, I. Smith, J. Taubert
et al., “Implementation and relevance of fair data principles in
biopharmaceutical r&d,” Drug discovery today, vol. 24, no. 4,
pp. 933–938, 2019.

[6] M. D. Wilkinson, S.-A. Sansone, E. Schultes, P. Doorn, L. O. B.
da Silva Santos, and M. Dumontier, “A design framework and
exemplar metrics for fairness,” Scientific data, vol. 5, no. 1, pp.
1–4, 2018.

[7] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An
automated end-to-end optimizing compiler for deep learning,” in
13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 578–594.

[8] H. Vanholder, “Efficient inference with tensorrt,” 2016.
[9] “Mlcube,” June 2021. [Online]. Available: https://mlcommons.

org/en/mlcube/
[10] R. Chard, Z. Li, K. Chard, L. Ward, Y. Babuji, A. Woodard,

S. Tuecke, B. Blaiszik, M. J. Franklin, and I. Foster, “Dlhub:
Model and data serving for science,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). Los
Alamitos, CA, USA: IEEE Computer Society, may 2019, pp.
283–292. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/IPDPS.2019.00038

[11] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong,
A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe
et al., “Accelerating the machine learning lifecycle with mlflow.”
IEEE Data Eng. Bull., vol. 41, no. 4, pp. 39–45, 2018.

[12] “Hugging face,” June 2021. [Online]. Available: https://
huggingface.co/

[13] “Tensorflow hub,” June 2021. [Online]. Available: https:
//www.tensorflow.org/hub

[14] “Pytorch hub,” June 2021. [Online]. Available: https://pytorch.
org/hub/

[15] Gluoncv model zoo. [Online]. Available: https://cv.gluon.ai/
model zoo/index.htmlx

[16] Caffe model zoo. [Online]. Available: https://caffe.berkeleyvision.
org/model zoo.html

[17] Onnx model zoo. [Online]. Available: https://github.com/onnx/
models

[18] “Apache arrow,” June 2021. [Online]. Available: https://arrow.
apache.org/

[19] “Mnist dataset,” June 2021. [Online]. Available: http://yann.
lecun.com/exdb/mnist/

[20] “Sgemm gpu kernel performance data set,” June 2021. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+
kernel+performance

[21] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-
end deep learning of optimization heuristics,” in 2017 26th Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 2017, pp. 219–232.

[22] “Clgen,” June 2021. [Online]. Available: https://chriscummins.
cc/clgen/

[23] D. Grewe, Z. Wang, and M. F. O’Boyle, “Portable mapping of
data parallel programs to opencl for heterogeneous systems,” in
Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2013, pp.
1–10.

[24] A. Magni, C. Dubach, and M. O’Boyle, “Automatic optimization
of thread-coarsening for graphics processors,” in Proceedings of
the 23rd international conference on Parallel architectures and
compilation, 2014, pp. 455–466.

[25] H. Xu, M. Emani, P.-H. Lin, L. Hu, and C. Liao, “Machine
learning guided optimal use of gpu unified memory,” in 2019
IEEE/ACM Workshop on Memory Centric High Performance
Computing (MCHPC). IEEE, 2019, pp. 64–70.

[26] G. Verma, Y. Gupta, A. M. Malik, and B. Chapman, “Performance
evaluation of deep learning compilers for edge inference,” in
2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2021, pp. 858–865.

[27] Imagenet. [Online]. Available: http://image-net.org/index
[28] Google. Tensorflow lite. [Online]. Available: https://www.

tensorflow.org/lite
[29] NVIDIA. Tensorrt. [Online]. Available: https://developer.nvidia.

com/tensorrt
[30] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lind-

ström, “Json-ld 1.0,” W3C recommendation, vol. 16, p. 41, 2014.
[31] “Onnx,” June 2021. [Online]. Available: https://onnx.ai/
[32] Uno. [Online]. Available: https://github.com/ECP-CANDLE/

Benchmarks/tree/develop/Pilot1/Uno
[33] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,

L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al.,
“Cosmoflow: Using deep learning to learn the universe at scale,”
in SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2018, pp. 819–
829.

http://cknowledge.org/
https://mlcommons.org/en/mlcube/
https://mlcommons.org/en/mlcube/
https://doi.ieeecomputersociety.org/10.1109/IPDPS.2019.00038
https://doi.ieeecomputersociety.org/10.1109/IPDPS.2019.00038
https://huggingface.co/
https://huggingface.co/
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://pytorch.org/hub/
https://cv.gluon.ai/model_zoo/index.htmlx
https://cv.gluon.ai/model_zoo/index.htmlx
https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html
https://github.com/onnx/models
https://github.com/onnx/models
https://arrow.apache.org/
https://arrow.apache.org/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://chriscummins.cc/clgen/
https://chriscummins.cc/clgen/
http://image-net.org/index
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://github.com/ECP-CANDLE/Benchmarks/tree/develop/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/develop/Pilot1/Uno

	Introduction
	Related work
	MLCube
	DLHub
	Collective Knowledge
	MLflow
	Hugging Face
	Tensorflow and PyTorch Hub
	Comparing State-of-the-art Frameworks

	Proposed Framework: HPCFair
	Design Overview
	Serving models, datasets, and data objects
	Tags-based search
	Pipeline development support

	Metadata
	Enabling FAIR Principles for AI Models
	Enabling FAIR Principles for Datasets
	Managing Experiment or Workflows

	Evaluation
	Evaluating Support for DNN models
	Evaluating Support for ML libraries
	Evaluating Reproducibility of Published Research
	Evaluating Support For Workflows
	Evaluating Support For Design Space Exploration
	Enabling FAIR Principles by HPCFAIR

	Use Cases Reinforcing Scientific Machine Learning Applications
	Democratizing Datasets and Models in Medical Research
	Predicting Cosmological Parameters Efficiently

	Discussion
	References

