
HPC Ontology: Towards a Unified Ontology for
Managing Training Datasets and AI Models for

High-Performance Computing
Chunhua Liao1, Pei-Hung Lin1, Gaurav Verma4, Tristan Vanderbruggen1,

Murali Emani3, Zifan Nan2, Xipeng Shen2

1Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2North Carolina State University, Raleigh, NC 27695, USA

3Argonne National Laboratory, Lemont, IL 60439, USA
4Stony Brook University, Stony Brook, NY 11794, USA

Abstract—Machine learning (ML) techniques have been widely
studied to address various challenges of productively and ef-
ficiently running large-scale scientific applications on hetero-
geneous supercomputers. However, it is extremely difficult to
generate, access, and maintain training datasets and AI mod-
els to accelerate ML-based research. The Future of Research
Communications and e-Scholarship has proposed the FAIR data
principles describing Findability, Accessibility, Interoperability,
and Reusability. In this paper, we present our ongoing work of
designing an ontology for high-performance computing (named
HPC ontology) in order to make training datasets and AI
models FAIR. Our ontology provides controlled vocabularies,
explicit semantics, and formal knowledge representations. Our
design uses an extensible two-level pattern, capturing both high-
level meta information and low-level data content for software,
hardware, experiments, workflows, training datasets, AI models,
and so on. Preliminary evaluation shows that HPC ontology is
effective to annotate selected data and support a set of SPARQL
queries.

Index Terms—Ontology, HPC, FAIR, datasets, AI models

I. INTRODUCTION

Due to the extreme heterogeneity and complexity of high-
performance computing (HPC) node architectures, white-box
analytical modeling techniques have become less tractable for
analyzing and optimizing large-scale scientific applications. As
an alternative, Artificial Intelligence (AI), especially machine
learning (ML)-based techniques have been widely used to
address various challenges in HPC, including those related
to performance modeling and prediction [1]–[4], performance
analysis [5]–[9], resilience [10], [11], data storage format
selection [12], memory optimization [13], scheduling [14], and
so on.

However, the HPC community’s consensus is that it is
difficult to find, access, prepare, share, and reuse high-quality
training datasets and AI models, as stated by a recent report
of the Department of Energy’s Office of Science [15]. This
is especially true when ML is applied to analyze and opti-
mize large-scale HPC applications running on heterogeneous
node architectures. Researchers spend a significant amount
of effort using highly specialized tools (including compilers,
performance tools, and runtime systems) to extract and process

training datasets from HPC systems. A range of machine
learning frameworks is then used to generate AI models. Such
datasets and AI models are stored in numerous formats, often
without sufficient metadata to describe their semantics. Many
datasets and models are underutilized. Part of the reason is
that the community has not established standard processes to
share the valuable datasets and the corresponding AI models.
As a result, researchers and developers have to resort to
costly repeated data collection processes. The HPC community
cannot quickly build, evaluate, and reuse machine learning
techniques to address pressing HPC challenges.

The problem the HPC community is facing is not unique. In
many other research communities, researchers are establish-
ing standard guidelines and recommending best practices to
make scientific data Findable, Accessible, Interoperable, and
Reusable (FAIR) [16]. Briefly, Findability means that data can
be found online, typically through indexing in search engines.
Accessibility indicates that data can be retrieved directly or via
an approval process. Interoperability means that data follows
standards. Finally, reusability denotes that the context of data
generated (metadata) is documented so it can be compared to
or integrated with other datasets.

This paper focuses on our preliminary work of developing
a core component to enable FAIRness of training datasets and
AI models for HPC: the HPC ontology, which is a collection
of essential concepts and properties capturing information in
the domain of HPC, using formal knowledge representation
of Web Ontology Language (OWL) [17]. The HPC ontology
provides a common vocabulary to describe various datasets
and AI models. It also provides the semantics to enable the
interoperability of heterogeneous data. In particular, we make
the following contributions.

• We analyze the FAIR data principles and identify ontolo-
gies as essential enabling components.

• We create a set of guidelines for designing the HPC
ontology, which takes into consideration the special re-
quirements and constraints of making datasets and AI
models FAIR in the HPC community.

• A high-level core ontology is designed to provide stan-



dard concepts and properties to annotate datasets, and
AI models. This is required to facilitate data sharing and
searching.

• A set of low-level supplemental components are pre-
sented to capture fine-grained information in various
subdomains such as computers and performance datasets.

• Using a few use cases, we evaluate the benefits of the
HPC ontology for annotating data and answer queries.

The remainder of this paper is organized as follows. In
the next section, we will introduce the background infor-
mation about the FAIR principles and the critical roles of
ontologies. Section III presents the design philosophy of the
HPC ontology. Section IV details the high-level concepts and
properties of the HPC ontology, while Section V explains
how more fine-grained information is organized in low-level
components for various subdomains. We evaluate the current
draft HPC ontology in Section VI. Related work is discussed
in Section VII. Finally, Section VIII concludes the paper with
a plan for future work.

II. BACKGROUND

We provide background information about the FAIR prin-
ciples for sharing scientific data and how ontologies play an
important role in achieving FAIRness.

A. The FAIR Data Principles

Accelerating scientific discoveries and innovations depend
on a good ecosystem managing experiment data for various
purposes such as validation and reusing. Unfortunately, exist-
ing scholar publication systems focus mostly on papers. The
associated experiment data is either discarded or treated as
a secondary citizen with lower standards for publishing. In
response to the urgent need in the scientific community to im-
prove the infrastructure supporting the reuse of scholarly data,
the Future of Research Communications and e-Scholarship
(FORCE11) proposed the FAIR data principles [16] describ-
ing four fundamental principles: Findability, Accessibility,
Interoperability, and Reusability. These principles are further
refined, as shown in Table I.

One of the main goals of the FAIR principles is to achieve
machine-actionability in order to process the large amount of
scholar data generated daily. This means that data management
systems should provide rich and standard information such
as the type of digital objects, their formats, licensing, and
appropriate operations on them. To be practical, both contex-
tual metadata surrounding a digital object and the content of
the digital object should use controlled vocabularies, which
in turn are associated with controlled semantics. As a result,
several refined FAIR principles shown in Table I explicitly
mention vocabularies (I2), knowledge representation (I1), and
community standards (R1.3) to improve machine-actionability.

B. Ontologies

Ontologies can provide the much-needed controlled vocab-
ularies, knowledge representation, and standards to implement

TABLE I
FAIR PRINCIPLES PROPOSED BY FORCE11 [16]

F: To be Findable
F1 (Meta)data are assigned a globally unique and persistent identifier
F2 Data are described with rich metadata
F3 Metadata clearly and explicitly include the identifier of the data

they describe
F4 (Meta)data are registered or indexed in a searchable resource
A: To be Accessible
A1 (Meta)data are retrievable by their identifier using a standardised

communications protocol
A1.1 The protocol is open, free, and universally implementable
A1.2 The protocol allows for an authentication and authorisation proce-

dure, where necessary
A2 Metadata are accessible, even when the data are no longer available
I: To be Interoperable
I1 (Meta)data use a formal, accessible, shared, and broadly applicable

language for knowledge representation
I2 (Meta)data use vocabularies that follow FAIR principles
I3 (Meta)data include qualified references to other (meta)data
R: To be Reusable
R1 (Meta)data are richly described with a plurality of accurate and

relevant attributes
R1.1 (Meta)data are released with a clear and accessible data usage

license
R1.2 (Meta)data are associated with detailed provenance
R1.3 (Meta)data meet domain-relevant community standards

the FAIR data principles. Ontology [18] is a concept originat-
ing in Philosophy, referring to the study of the nature of being,
as well as the basic categories of them and their relations.
In recent decades, it has become a formal way to explicitly
represent knowledge in a domain. An ontology [18], [19] is
a formal specification for explicitly representing knowledge
about types, properties, and interrelationships of the entities
in a domain. It provides a common vocabulary to represent
and share domain concepts. Compared to tree-like taxonomy
solely modeling the generalization-specialization relation, an
ontology can form a much more complex graph with edges to
model any kinds of relationships between entities (represented
as graph nodes). Such graphs are often called knowledge
graphs in many communities.

Figure 1 illustrates an example ontology for Robotics. Each
node in the graph represents a concept or instance, and each
edge carries a property indicating the relations between the
two nodes it connects. For example, there are two nodes named
“Agent” and “Object” indicating two concepts (or classes). The
“is-a” edge between them means that one is a subclass of the
other. An edge labeled ‘instanceOf” denotes that a node is an
instance of a node representing a class. Another edge (labeled
“hasPart”) between “Robot” and “Arm” indicates that the latter
is a part of the former.

A formal language for expressing ontologies is the Web
Ontology Language (OWL) [17]. OWL is based on the de-
scription logic (DL) and is expressive enough for building
sophisticated knowledge bases while still supporting efficient
inference. Resource Description Framework (RDF) is a fun-
damental format used to store a wide range of information,
including ontologies written in OWL. Each piece of knowledge



Fig. 1. An example ontology on robotics.

stored in RDF is represented as a triple, (subject, property, ob-
ject). For instance, (“Tatooine”, instanceOf, “Planet”) states
that Tatooine is an instance of Planet.

An ontology can be queried using a standard RDF query
language named SPARQL. An example query in Listing 1
can be used to find all robots on the Tatooine planet using the
Robotics ontology through the join of two properties. rdf:type
is a standard RDF property to link a resource as an instance to
its class. :on is the property to link a resource to its location.

Listing 1. Example SPARQL Query on the Robotics Ontology
1 SELECT ?s
2 WHERE { ?s rdf:type :Robot .
3 ?s :on :Tatooine }

Numerous ontologies or controlled vocabularies have been
developed to enhance interoperability and reusability of data
in different domains. For example, EDAM [20] is an ontology
for bioinformatics operations and data types. Schema.org [21]
is designed to improve the interoperability of web data. The
Genomic Data Commons of National Cancer Institute [22]
maintains standard terms and references to public ontologies
and vocabularies in dictionary files to share linked clinical and
genomic data. Brick [23] is an ontology to capture the common
terms and relations in the domain of smart buildings.

In summary, the use of ontologies ensures “I”nteroperability
and “R”eusability of the FAIR principles. In the context
of making HPC training datasets and AI models FAIR, a
supportive ontology is a natural prerequisite to provide a
standard vocabulary of the HPC domain. However, there is a
lack of effort of creating ontologies for the domain of machine
learning-based program analysis and optimizations in high-
performance computing (HPC). The focus of this paper is to
contribute a design of such an ontology, namely HPC ontology.

III. DESIGN PHILOSOPHY

In order to support datasets and AI models used for HPC
software analysis and optimizations, the HPC ontology has to
cover a sufficiently large scope, including software, hardware,
their interactions, as well as AI models. Developing a full-
scale ontology to capture everything in HPC is impractical. It
is also against the very idea of controlled vocabulary. There

is also a choice between developing an ontology from scratch
and reusing existing ones. The key to the success of a domain-
specific ontology is to have a carefully controlled scope so it is
easy for users to learn while covering sufficient concepts and
relationships of the selected domain. With these constraints in
mind, we adopt a modular design with a two-level structure
for the HPC ontology, with the following design principles.

a) Principle 1: We decide to have a set of high-level
core components within the HPC ontology to capture high-
level concepts and relationships used to describe entire datasets
or AI models. This core ontology aims to provide metadata
for users to annotate datasets and AI models as a whole.
The metadata may include descriptive, administrative, and
statistical information about datasets and models. We expect
the high-level components are mostly stable for enhanced
interoperability.

b) Principle 2: A set of low-level components are de-
veloped for representing fine-grain, internal information of
various subdomains. These low-level components of the HPC
ontology provide concepts and relationships details for smaller
domains, such as program analyses, compilers, hardware fea-
tures, performance tools, and their results, libraries, SDKs,
AI models, and so on. The set of low-level components
is extensible to accommodate the rapid evolvement of HPC
software and hardware. They can be easily added, loaded, or
phased out as supplemental components to the HPC ontology.

c) Principle 3: The reality is that most HPC researchers
and developers are not familiar with ontology techniques. To
make the HPC ontology easy to learn, we keep the core
concepts and properties of the HPC Ontology into a single
namespace (with a prefix named hpc:), without depending on
names from other ontologies. This will relieve users from the
burden of learning tens of other ontologies before they can
use the HPC ontology to annotate basic data or form common
queries.

d) Principle 4: For particular subdomains, if there are
existing high-quality ontologies that are lightweight and easy
to learn, we directly incorporate them as low-level, sup-
plemental components. For instance, to encode content of
scientific datasets, we have found that providing accurate
unit information is indispensable. One example is execution
duration. There are multiple units used in the field, such as
seconds, milliseconds, microseconds and so on. After survey-
ing the literature, we have found that the QUDT (Quantities,
Units, Dimensions and Types) ontologies, originally developed
by NASA researchers, already provide a good solution for
encoding data with different units of measures. It also provides
a mechanism to add extensions. Therefore, we directly use
QUDT to encode units of scientific data.

e) Principle 5: To enable interoperability, we also link
the content of HPC ontology with equivalent concepts and
relationships from mainstream ontologies, such as Dublin Core
metadata [24], Schema.org [21] and DBpedia [25]. Users who
are already familiar with other ontologies can still use the same
terms. SPARQL query engines can easily process queries using



popular vocabularies. This makes datasets and AI models
annotated by HPC ontology part of the linked data ecosystem.

f) Principle 6: Although there is some progress for
techniques used to automatically generate ontologies, they are
still immature. We decided to create the content of the HPC
ontology manually. This will give us more control over the set
of concepts and relationships to be included or excluded. We
can also curate the class hierarchies of different subdomains,
leveraging the extensive human experiences of our team in
HPC.

g) Principle 7: We use an incremental and use case
driven approach to develop the HPC ontology. The initial
version will be developed using a set of simple use cases. Later
versions will be developed with increasingly more complex
use cases combined with more strict evaluation criteria in-
cluding size, completeness, accuracy, consistency, correctness,
conformity to community standards, persistence, accessibility,
and so on.

IV. HIGH-LEVEL CORE ONTOLOGY

In this section, we present representative high-level concepts
and their corresponding properties of the HPC ontology.

A. Basic Scenario and Naming Convention

A basic scenario described by the HPC ontology is that
some people who are members of a project used some software
and hardware to conduct some experiments, which in turn
used some input data to generate training datasets or AI
models. The semantics can be mapped to three high-level
concepts, including Agent, Activity, and Artifact. Essentially,
some Agent conducted some Activity which used some Artifact
as input and generated some other Artifact.

As shown in Figure 2, we follow a common naming
convention when defining vocabularies in the HPC ontology:
Singular nouns in CamelCase are used to indicate a Class.
Multiword names are written without any spaces but with each
word written in uppercase. Relationship (or Property) names
start with lowercase letters. For example, hpc:Project means
a class while hpc:project indicates a property that links some
data with its associated project.

Dashed arrows in the figure indicate the isA relation between
a subclass and its superclass. For instance, both training
datasets and AI models are kind of data in this context. Solid
line arrows indicate other relationships. Some arrows have
only a single label to denote a single relationship. To simplify
the diagram, inverse relationships are combined in a single
arrow with a pair of relationship labels. For example, the
label of the arrow between Person and Project includes both
hpc:memberOf and hpc:member. Not all edges are shown in
the figure to avoid a cluttered figure.

B. Top level Concept: Thing

To provide provenance of all information, the very top level
concept in the HPC ontology, hpc:Thing, is associated with a
set of fundamental properties (listed in Table II) about its
unified resource identifier, the type of the ID (such as Open

Researcher and Contributor ID and Digital Object Identifier),
name, URL, etc. Any other concepts (from both high and low
levels) are direct or indirect subclasses of hpc:Thing. They
naturally inherit all the fundamental properties of hpc:Thing.
The hpc:Thing node and its edges are not shown in Figure 2
to simplify the figure.

TABLE II
PROPERTIES OF THE THING CLASS

Property Data-type Description

hpc:id xsd:anyURI URI of the thing
hpc:idType xsd:string Type of the ID, such as ORCID, DOI, etc.
hpc:name xsd:string Name of the thing
hpc:alternateName xsd:string An alias for this item
hpc:description xsd:string Short description
hpc:url xsd:anyURI URL of the official website of a thing
hpc:submitter xsd:anyURI Who submits this piece of info.
hpc:submitDate xsd:dateTime Date of submission

C. Activity and Experiment

As shown in Figure 2, the centerpiece of this design
is the concept of Activity, which connects to many other
concepts through properties such as hpc:used, hpc:generated,
hpc:wasAssociatedWithSoftware, hpc:usedWorkflow,
hpc:wasConductedBy, and so on. An activity is something that
occurs over a period of time. An activity could happen after
another one, linked using hpc:wasPrecededBy. Experiment is
a subclass of Activity to represent HPC experiments.

Table III lists major properties of the Experiment
class. For convenience, we also define equivalent
properties as needed. For example, hpc:used is the
same as hpc:hadInput. hpc:wasAWS is a short name for
hpc:wasAssociatedWithSoftware. hpc:wasAWS is equivalent
to hpc:wasAssociatedWithHardware. There is also the
wasPrecededBy property to link a sequence of experiments.

TABLE III
MAJOR PROPERTIES OF THE EXPERIMENT CLASS

HPC Ontology Property Data-type Description

hpc:used xsd:anyURI Input data, ==hpc:hadInput
hpc:generated xsd:anyURI Generated data, ==hpc:hadOutput
hpc:usedWorkflow xsd:anyURI Workflow used
hpc:wasPrecededBy xsd:anyURI Experiments before this one
hpc:wasConductedBy xsd:anyURI Link to persons
hpc:wasAWS xsd:anyURI Software used
hpc:wasAWH xsd:anyURI Hardware used
hpc:startDate xsd:dateTime Start time
hpc:endDate xsd:dateTime End time
hpc:project xsd:anyURI Associated projects

D. Artifact and Data

We define Data as a subclass of Artifact and further cate-
gorize it into Workflow, Training Dataset, and AI model. We
have found that in practice, any combinations of mixed scripts,
datasets, and AI model files are shared and reused. They
are just vaguely categorized as Data currently. In the HPC
software analysis and optimization domain, software itself is
also a kind of artifact that can be used as input or output



Hardware

Software

Project
hpc:data/hpc:project

hp
c:w

as
As
so
cia
ted
W
ith
Ha
rd
wa
re

hpc:memberOf
/hpc:member

AI
Model

Data

Training
Dataset

isAisA

hpc:runsOn
/hpc:software

hpc:dataset/hpc:project

hpc:aiModel
/hpc:project

Computer

isA

isA

Activity

hpc:used

/hpc:wasUsedBy

hp
c:
ge
ne
ra
te
d

/h
pc
:w
as
G
en
er
at
ed
By

Agent
hpc:wasConductedBy
/hpc:conducted

hpc:wa
sAttrib

utedTo

hp
c:w

asA
sso

cia
ted
Wi
thS

oft
wa
re

Workflow

isA

hp
c:
us
ed
W
or
kf
lo
w

Experiment
isA

Artifact

Person

hpc:workflow/hpc:project

isA

Fig. 2. Major High-level Concepts and Relationships of the HPC Ontology

data. For example, many compilers, tools and workflows
process software as input data to generate program analysis
information. So there is a property link (isA) between Software
and Data also. Again, this edge is not shown in Figure 2 to
avoid cluttering.

Figure 3 shows the partial class hierarchy rooted at Artifact.
AIModel is equivalent to MachineLearningModel in the figure.

Fig. 3. Partial class hierarchy of artifact

Table IV shows essential properties for the Data class.
There are properties about license, version, associated projects,
as well as experiments generating or using the data. Note
that Data can be associated with one or more files through
the hpc:file property. Each file in turn has its properties

such as name, size, format, MD5, URL, etc. Data can be
derived from other data in a sequence of experiments. So we
have hpc:wasDerivedFrom to indicate such a property. In the
domain of program analysis and optimization, Data generated
often has one or more focus applications or machines. We
introduce targetApplication and targetMachine to directly sup-
port such links.

TABLE IV
MAJOR PROPERTIES OF THE DATA CLASS

Property Datatype Description

hpc:license xsd:string License of the data
hpc:version xsd:string Version number
hpc:subject xsd:string Performance modeling, optimization...
hpc:file xsd:anyURI Associated files
hpc:project xsd:anyURI Link to the associated projects
hpc:wasGeneratedBy xsd:anyURI output of experiments
hpc:wasUsedBy xsd:anyURI Input to experiments
hpc:wasDerivedFrom xsd:anyURI Some data was derived from other
hpc:targetApplication xsd:anyURI Applications being targeted
hpc:targetMachine xsd:anyURI Computers being targeted

For Dataset and AI Model classes, they inherit all
properties of their superclass Data. They also have addi-
tional properties as needed. For example, the AI Model
class shown in Table V has extra properties such
as source artifacts (hpc:wasDerivedFromDataset) used to
generate the model, machine learning framework used
(hpc:machineLearningFramework), configurable parameters
(hpc:params), accuracy (hpc:accuracy), and so on. Note that
hpc:wasDerivedFromDataset (shown in its abbreviation form
hpc:wasDFD) is a subclass (or a subproperty in ontology’s
term) of hpc:wasDerivedFrom.

E. Software

A piece of software (or a program) can be associated
with lots of details. We have to narrow down the scope to



TABLE V
MAJOR PROPERTIES OF THE AI MODEL CLASS

Property Datatype Description

hpc:modelFormat xsd:string Such as protobuf, onnx, h5
hpc:isTunable xsd:boolean Tunable during the runtime or not
hpc:params xsd:string Configurable parameters
hpc:framework xsd:anyURI Such as TF, PyTorch, MXNet, etc.
hpc:modelType xsd:string Relevant problem domains
hpc:supportsAccelerator xsd:boolean Run on accelerators or not
hpc:accuracy xsd:double Accuracy of the model
hpc:overhead xsd:double Overhead of the model
hpc:wasDFD xsd:string Datasets used to generate this model
hpc:learningType xsd:string Supervised, reinforcement learning, etc.
hpc:learningAlgorithm xsd:string Decision tree, random forest, etc.
hpc:hyperParameter xsd:dict Hyperparameters such as batch size
hpc:modelProperty xsd:dict Such as number and types of layers
hpc:inputShape xsd:string Input shape to be fed to the model
hpc:inputDatasetFormat xsd:string Input format of the dataset

support generic program analyses and optimizations. In the
HPC ontology class hierarchy, Software is a subclass of Data
so it has all of Data’s properties. We have added a few popular
subclasses of Software, including Compiler, OperatingSystem,
Benchmark, and so on as shown in Figure 3. In addition,
we add the properties shown in Table VI to support brief
information about a piece of software or benchmark being
analyzed or optimized.

TABLE VI
MAJOR PROPERTIES OF A SOFTWARE PROGRAM/BENCHMARK

Property Datatype Description

hpc:programLanguage xsd:string Programming languages used
hpc:operatingSystem xsd:string OS classes supported
hpc:firstReleaseDate xsd:date First release date
hpc:latestReleaseDate xsd:date Latest release date
hpc:vendor xsd:string Link to vendors
hpc:runsOn xsd:anyURI Machines runs the software
hpc:input xsd:anyURI Input data of the software
hpc:output xsd:anyURI Generated output data

F. Hardware and Computer

The HPC ontology must capture sufficient hardware and
computer information to be useful. An HPC computing system
can be a single node computer (including a workstation or
server) or a cluster with a set of computers. The computer
class in the HPC ontology collects the properties describing
hardware, performance, and manufacturing related details, as
shown in Table VII. Note that some properties should link
to structured QUDT data types to encode both values and
accurate units. For example, the hpc:harddriveSize property
has qudt:QuantityValue to capture sizes in different units such
as GigaBytes or TeraBytes.

We also model CPUs and coprocessors used by a computer.
They are linked from a computer object through hpc:cpu
and hpc:coprocessor respectively to provide more information.
Table VIII shows some basic CPU class’s properties. Given the
fast changing nature of CPUs and coprocessors (such as Nvidia
GPUs), we model their details in low-level supplemental
components with vendor-specific terms and properties. We
don’t put them into the core, high-level ontology.

TABLE VII
MAJOR PROPERTIES OF THE COMPUTER CLASS

Property Datatype Description

hpc:vendor xsd:string Vendor of the machine
hpc:cpu xsd:anyURI Associated CPUs
hpc:cpuCoresPerNode xsd:integer CPU core count
hpc:threadsPerNode xsd:integer Threads count
hpc:coprocessor xsd:anyURI Associated coprocessors
hpc:coprocessorCoresPerNode xsd:integer Coprocessor core count
hpc:memorySize qudt:QuantityValue Total memory size
hpc:harddriveSize qudt:QuantityValue Total hard drive size
hpc:totalPeakPerformance qudt:QuantityValue The peak performance
hpc:hasOperatingSystem xsd:string The operating system
hpc:hasCompiler xsd:string The compilers available
hpc:power qudt:QuantityValue Power consumption
hpc:powerEfficiency qudt:QuantityValue Such as GFlops/Watts
hpc:hasRmax qudt:QuantityValue Obtained peak perf.
hpc:hasRpeak qudt:QuantityValue Theoretical peak
hpc:dateCommissioned xsd:date Commission date
hpc:site xsd:string Hosting facility/institution
hpc:country xsd:string Located country

TABLE VIII
MAJOR PROPERTIES OF THE CPU CLASS

Property Datatype Description

hpc:processorTech xsd:string Codename/model
hpc:processorGeneration xsd:string Processor generation
hpc:processorCorePerSocket xsd:integer Cores in a socket
hpc:cpuFrequency qudt:QuantityValue Frequency
hpc:memoryBandwidth qudt:QuantityValue Memory bandwidth
hpc:processorPeakPerformance qudt:QuantityValue Processor performance
hpc:vendor xsd:string Link to vendors

Cluster is another class in the HPC ontology, inheriting
properties from the Computer subclass, to cover additional
properties needed for cluster systems. Each cluster object
can be linked to one or more computer objects through its
hasNode property. Table VII shows major properties of the
Cluster class. Given the importance of the Top500 project,
a cluster may have related Top500 ranking information (e.g.
hpc:top500Rank).

TABLE IX
MAJOR PROPERTIES OF THE CLUSTER CLASS

Property Datatype Description

hpc:totalClusterCPUCoreCount xsd:integer Total CPU cores number
hpc:systemArchitecture xsd:string MPP, cluster, etc.)
hpc:computeNodeCount xsd:integer Computer node count
hpc:gpuNodeCount xsd:integer Number of GPU nodes
hpc:top500Rank xsd:integer Top500 ranking
hpc:top500nmax xsd:integer Problem size used
hpc:totalCluserMemorySize qudt:QuantityValue Total memory
hpc:totalClusterPeakPerformance qudt:QuantityValue Total peak performance
hpc:hasNode xsd:anyURI Login or compute node

There are a few other high-level concepts such as Person
and Project to help describe the semantics of HPC datasets
and AI models. We omit their details since their properties
are trivial.

V. LOW-LEVEL COMPONENTS OF HPC ONTOLOGY

Low-level components of the HPC Ontology provide fine-
granularity concepts and properties to describe subdomains,



including hardware details, contents of profiling datasets, and
internal details of AI models. They are provided as needed
to achieve maximal FAIRness by providing rich attributes to
describe data elements. In this paper, we focus on several
example subdomains relevant to the scope of our work.

A. A Coprocessor: NVIDIA GPU

For heterogeneous architectures, Nvidia’s GPUs are popular
components of many supercomputers. Six out of the top ten
most powerful computers use Nvidia GPUs, as shown in June
2021’s Top500 list [26]. We have added a low-level GPU
component into HPC ontology to model the properties of
GPUs. Similar low-level components can be added in the
future to support other types of heterogeneous processors such
as TPU, neuromorphic processors, FPGAs and so on.

Table X shows major properties of a NVIDIA GPU. The
properties can be divided into two sets: one is the set of fixed
properties of the GPU such as hpc:theoreticalGPUOccupancy.
The other set includes configurable properties such as
hpc:gpuThreadBlockSize used to indicate the thread block size
configured during a kernel launch.

B. A GPU Performance Dataset: XPlacer

When building AI models for program analyses and opti-
mizations, performance profiling information is often a critical
part of the corresponding training datasets. We select a dataset
from XPlacer [13] as an example. The dataset contains GPU
performance profiling data used to build models guiding GPU
memory placement choices for arrays.

A key observation here is that program optimizations often
happen at the kernel (or function) level. So we provide
properties associated with kernel performance. Table XI lists
properties to capture Nvidia GPU’s performance profiling
information. The properties can be grouped into several cat-
egories, including basic information about a kernel and its
major data objects (arrays), execution time, and hardware
counter based information such as cache utilization rate, page
faults, data transfer sizes. Finally, for optimization problems
selecting optimal code variants, we provide hpc:codeVariant
and hpc:bestCodeVariant to annotate labels.

VI. PRELIMINARY RESULTS

This section presents some preliminary use cases using
the current draft HPC Ontology, including providing standard
metadata for annotating various data and answering questions
posed as SPARQL queries.

An AWS machine is used to run experiments. It has 4 cores
of Intel Xeon CPU E5-2676 v3 running at 2.40GHz and 16
GB main memory. The evaluation uses a set of tools. Protege
v5.5.0 is used for ontology development. Typically raw data
is stored in CSV files. Tarql (git hash #b06b4dd) [27] is used
to automatically convert CSV files into RDF triples saved into
N-Triples (.NT) files. Tarql’s conversion rules are manually
specified using SPARQL 1.1 syntax. Blazegraph v2.1.6 is
used as the graph database supporting standard RDF/SPARQL

APIs. All N-Triples files are loaded into a namespace of
Blazegraph in a triples mode and inference turned on.

JSON-LD, a JSON-based format storing Linked Data, is
used as the main format to present annotated data. JSON-LD
can be viewed as JSON plus Context and ID information.
The context is used to define the short-hand names. IDs are
unique name identifiers to describe keys in the document.
These IDs are used as the keys of JSON’s key-value pairs
to unambiguously encoding information linked to formally
defined entities in an ontology. We use a Python script calling
RDFLib APIs to generate the JSON-LD output from .NT files.

A. Providing Metadata for Top500 Supercomputers

Machine properties are fundamental information in HPC.
We use the concepts and properties of the HPC ontology
to annotate the tabular information of the fastest machine,
Supercomputer Fugaku, published in June 2021’s Top500
list [26].

The HPC Ontology has all the concepts and properties
needed to fully annotate the content of the entire top 500
spreadsheet. Listing 2 shows various example properties of
Fugaku in JSON-LD format. All properties are stored in
key-value pairs. The machine is uniquely identified by its
system ID (179807) assigned by the Top500 website. The HPC
ontology provides vocabularies of property names, such as
hpc:name, hpc:Cluster, and hpc:power. The QUDT ontology
provides structured values with detailed information for the
units used, such as MegaHZ and KiloWatt. Note that QUDT
originally did not have the TeraFLOPS unit; we have extended
it to support this.

Listing 2. Example Fugaku’s Information Annotated Using HPC Ontology
1 {
2 "@id": "https://www.top500.org/system/179807",
3 "@type": "hpc:Cluster",
4 "hpc:name": "Supercomputer Fugaku",
5 "hpc:top500Rank": 1,
6 "hpc:vendor": "Fujitsu",
7 "hpc:country": "Japan",
8 "hpc:cpuArchitecture":"Fujitsu ARM",
9 "hpc:cpuFrequency": { "@id": "_:B9e8a3" },

10 "hpc:hasOperatingSystem": "Red Hat Enterprise Linux",
11 "hpc:hasRmax": { "@id": "_:B17f29" },
12 "hpc:power": { "@id": "_:N15c5a" },
13 "hpc:processorCorePerSocket": 48,
14 "hpc:processorGeneration": "Fujitsu A64FX",
15 "hpc:site": "RIKEN Center for Computational Science",
16 "hpc:systemArchitecture": "MPP",
17 "hpc:systemModel": "Supercomputer Fugaku",
18 "hpc:totalClusterCPUCoreCount": 7630848
19 },
20

21 { "@id": "_:B17f29",
22 "@type": "qudt:QuantityValue",
23 "qudt:unit": { "@id": "http://qudt.org/vocab/unit/

TeraFLOPS"},
24 "qudt:value": "442010.00"
25 },
26

27 { "@id": "_:B9e8a3",
28 "@type": "qudt:QuantityValue",
29 "qudt:unit": {"@id": "http://qudt.org/vocab/unit/MegaHZ

"},
30 "qudt:value": "2200"
31 },
32

33 { "@id": "_:N15c5a",
34 "@type": "qudt:QuantityValue",



TABLE X
MAJOR PROPERTIES OF A NVIDIA GPU

Property Datatype Description

hpc:dramFrequency qudt:QuantityValue Frequency of DRAM
hpc:streamingMultiprocessorFrequency qudt:QuantityValue Frequency of Streaming multiprocessor
hpc:activeCyclesOfStreamingMultiprocessor xsd:integer Active cycle counts from SM
hpc:theoreticalActiveWarpsPerSM xsd:integer Theoretical Active Warps per SM
hpc:theoreticalGPUOccupancy xsd:double Theoretical Occupancy
hpc:maxGPUThreadBlockSizeLimitedBySM xsd:integer Max block limited by SM
hpc:maxGPUThreadBlockSizeLimitedByRegister xsd:integer Max block limited by registers
hpc:maxGPUThreadBlockSizeLimitedBySharedMemory xsd:integer Max block limited by shared memory
hpc:maxGPUThreadBlockSizeLimitedByWarps xsd:integer Max block limited by warps
hpc:gpuThreadBlockSize xsd:integer Launch block size
hpc:gpuThreadGridSize xsd:integer Launch grid size
hpc:registersPerThread xsd:integer Launch register//thread
hpc:gpuSharedMemoryConfigurationSize qudt:QuantityValue Launch shared memory configuration size
hpc:gpuStaticSharedMemorySizePerBlock qudt:QuantityValue launch static shared memory
hpc:gpuThreadCount xsd:integer GPU thread count
hpc:gpuWavesPerSM xsd:integer Launch wave per SM
hpc:gpuUnifiedMemoryRemoteMapSize qudt:QuantityValue Unified memory remote map

TABLE XI
MAJOR PROPERTIES OF KERNEL PERFORMANCE PROFILING DATA

Property Datatype Description

Kernel Information

hpc:kenelName xsd:string Kernel/function name
hpc:benchmark xsd:anyURI Associated benchmark
hpc:commandLineOption xsd:string Command line Options
hpc:arrayName xsd:string Name of array
hpc:allocatedDataSize qudt:QuantityValue Memory allocation size
hpc:beginMemoryAddress xsd:string Beginning array address
hpc:endMemoryAddress xsd:string Ending array address

Performance Information

hpc:cycle xsd:integer Profiled cycle count
hpc:executionTime qudt:QuantityValue Execution time
hpc:numberOfCalls xsd:integer Number of calls
hpc:averageExecutionTime qudt:QuantityValue Average execution time
hpc:minExecutionTime qudt:QuantityValue Min. execution time
hpc:maxExecutionTime qudt:QuantityValue Max. execution time
hpc:executionTimePercentage xsd:double Percentage of time spent
hpc:memoryThroughputRate xsd:double Memory Throughput
hpc:dramUtilizationRate xsd:double DRAM utilization rate
hpc:l1CacheUtilizationRate xsd:double L1/Tex utilization rate
hpc:l2CacheUtilizationRate xsd:double L2 utilization rate
hpc:achievedGPUOccupancy xsd:double GPU occupancy
hpc:achievedActiveWarpsPerSM xsd:integer Active warps per SM
hpc:cpuPageFault xsd:integer CPU page fault count
hpc:gpuPageFault xsd:integer GPU page fault count
hpc:hostToDeviceTransferSize qudt:QuantityValue HostToDevice transfer
hpc:deviceToHostTransferSize qudt:QuantityValue DeviceToHost transfer

Labels

hpc:codeVariant xsd:integer Code variant ID
hpc:labeledCodeVariant xsd:integer Best variant ID

35 "qudt:unit": {"@id": "http://qudt.org/vocab/unit/KiloW"},
36 "qudt:value": "29899.23"
37 }

B. Providing Metadata for Datasets and AI Models

We are developing a web portal to allow users to submit
information about training datasets and AI models in HPC. To
make the submitted data complaint with the FAIR principals,
standard metadata must be used to annotate the datasets and
AI models. The HPC ontology can serve as the metadata for
this purpose.

Listing 3 shows a benchmark software package [28] which
was used as an input dataset for a code similarity analysis
experiment. It is easy to identify metadata for its name, license,
subject, related project, and so on.

Listing 3. Example Dataset Annotated Using HPC Ontology
1 {
2 "@id": "http://example.org/dataset/DA000005",
3 "@type": "hpc:Dataset",
4 "hpc:description": "microbenchmark kernels in C/C++ and

Fortran",
5 "hpc:hasIDType": "System Generated",
6 "hpc:license": "BSD",
7 "hpc:name": "DataRaceBench micro-benchmarks",
8 "hpc:project": {
9 "@id": "http://example.org/project/PR000002"

10 },
11 "hpc:subject": [
12 "OpenMP",
13 "Data Race Detection",
14 "Computer Science"
15 ],
16 "hpc:url": "https://github.com/LLNL/dataracebench/tree/

master/micro-benchmarks",
17 "hpc:version": "1.3.2"
18 }

Listing 4 shows metadata for an AI model released by a
study [13]. Besides common metadata for its name and type,
it additionally has metadata specific to this AI model, such
as hpc:wasDerivedFromDataset, hpc:learningAlgorithm, and
hpc:targetMachine.

Listing 4. Example AI model annotated using HPC ontology
1 {
2 "@id": "http://example.org/AIModel/MO000001",
3 "@type": "hpc:AIModel",
4 "hpc:contributor":
5 {"@id": "http://example.org/person/PI000013" },
6 "hpc:description": "Onnx version of the decision tree

model for XPlacer",
7 "hpc:wasGeneratedBy":
8 {"@id": "http://example.org/experiment/EX000002"},
9 "hpc:hasIDType": "System Generated",

10 "hpc:wasDerivedFromDataset": [
11 {"@id": "http://example.org/dataset/DA000001"},
12 {"@id": "http://example.org/dataset/DA000002"},
13 {"@id": "http://example.org/dataset/DA000003"},
14 {"@id": "http://example.org/dataset/DA000004"}
15 ],
16 "hpc:isTunable": false,
17 "hpc:learningType": "Supervised ",
18 "hpc:modelFormat": "ONNX",



19 "hpc:modelType": "Prediction",
20 "hpc:learningAlgorithm" : "Decision Tree",
21 "hpc:name": "decisionTree.onnx",
22 "hpc:project":
23 {"@id":"http://example.org/project/PR000001"},
24 "hpc:subject": [
25 "GPGPU",
26 "Heterogeneous Systems",
27 "Data Placement",
28 "Decision Tree"
29 ],
30 "hpc:supportsAccelerator": true,
31 "hpc:targetMachine":
32 {"@id": "http://example.org/cluster/lassen"},
33 "hpc:url": "https://github.com/xyz/decisionTree.onnx"
34 },
35 "hpc:version": "1.2.1"
36 }

C. Encoding GPU Profiling Dataset Stored in a CSV File

Low-level components of the HPC ontology can be used to
encode the internal content of datasets or AI models. Listing 5
shows the annotation of a row of a CSV file representing
a dataset released by a study [13]. Each row represents
information about an array accessed within a kernel code
variant and the kernel’s associated profiling metrics such as
GPU data transferring data sizes and page faults. The dataset
was used to train a model deciding which code variant delivers
the best performance. Using properties defined in Table XI,
the annotated json-ld file contains accurate, machine readable
information for each cell, which facilitates interoperability and
reusability of the dataset.

Listing 5. Example profiling dataset annotated using HPC ontology
1 {
2 "@id": "https://github.com/xyz/rodinia_3.1

_cuda_bfs_datalevel-lassen.csv#L11",
3 "@type": "hpc:TableRow",
4 "hpc:BeginMemoryAddress": "0x200060080000",
5 "hpc:EndMemoryAddress": "0x200060090000",
6 "hpc:allocatedDataSize": 65536,
7 "hpc:arrayID": "1",
8 "hpc:arrayName": "h_graph_mask",
9 "hpc:codeVariant": "111100",

10 "hpc:commandLineOption": "graph65536",
11 "hpc:cpuPageFault": 2,
12 "hpc:deviceToHostTransferSize": {
13 "@id": "_:Nca485"
14 },
15 "hpc:hostToDeviceTransferSize": {
16 "@id": "_:Na7702" }
17 },
18 {
19 "@id": "_:Na7702",
20 "@type": "qudt:QuantityValue",
21 "qudt:unit": {
22 "@id": "http://qudt.org/vocab/unit/KiloBYTE" },
23 "qudt:value": {
24 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
25 "@value": "192.0" }
26 },
27 {
28 "@id": "_:Nca485",
29 "@type": "qudt:QuantityValue",
30 "qudt:unit": {
31 "@id": "http://qudt.org/vocab/unit/KiloBYTE"
32 },
33 "qudt:value": {
34 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
35 "@value": "0.0"
36 }
37 }

D. Enabling Various Queries

A standard approach to evaluating an ontology is to check
if the ontology can be used to formulate questions asked by
intended users. Such questions often are called competency
questions. We anticipate some typical questions from a HPC
user may include the following:

• Q1: What are the ids of datasets from a research project
named “Xplacer”?

• Q2: What are the names of AI models available for a
supercomputer named “lassen”?

• Q3: What AI models are available for machines with
GPUs named “Nvidia V100”?

• Q4: What datasets of projects funded by NSF are avail-
able for building Performance Prediction models?

• Q5: What workflows are available for generating AI mod-
els guiding “Heterogeneous Mapping” of a benchmark
(e.g. the NAS Parallel Benchmark or NPB) running on a
machine using AMD GPUs?

We populated a Blazegraph RDF database with information
encoding a few example datasets and AI models found in
the literature, assuring diversified datasets and models across
widely researched domains. We gathered data from projects
like XPlacer [13] that come with the workflows defining
dataset collection and offer models to perform experiments.
Further, there were scenarios when researchers publish their
results as a package or complete tool. The ProGraML [29] and
MLGO [30] are such considered examples. Additionally, we
included literature from HPC Energy Research [31] providing
datasets or models alone. We also collected some datasets and
refined models hosted at Kaggle. They are related to the GPU
Kernel Performance [32]–[34].

Listing 6 shows the SPARQL queries sent to the Blazegraph
database and the corresponding answers obtained, for Q1
through Q3. Listing 7 shows queries and results for Q3 and Q4.
The results show that HPC Ontology is complete to support
the concepts and properties expressed in these queries which
in turn obtain desired results.

Listing 6. SPARQL queries to answer competency questions 1-3
1 PREFIX hpc: <https://example.org/HPC-Ontology#>
2 # Query for Q1: dataset ids of a project
3 #-------------------------------------------------------
4 SELECT ?ds
5 WHERE { ?pid rdf:type hpc:Project .
6 ?pid hpc:name "Xplacer" .
7 ?pid hpc:dataset ?ds }
8

9 # Results: IDs of datasets
10 # <http://example.org/dataset/DA000001>
11 # <http://example.org/dataset/DA000002>
12 # <http://example.org/dataset/DA000003>
13 # <http://example.org/dataset/DA000004>
14

15 # Query for Q2: AI models’ names of a supercomputer
16 #-------------------------------------------------------
17 SELECT ?model_name
18 WHERE { ?model_id rdf:type hpc:AIModel .
19 ?model_id hpc:targetMachine
20 <http://example.org/cluster/lassen> .
21 ?model_id hpc:name ?model_name }
22

23 # Results : names of AI models
24 # decisionTree.onnx
25 # randomForest.onnx



26

27 # Query for Q3: machines with NVidia V100 and their models
28 #-------------------------------------------------------
29 SELECT ?machine ?model_id
30 WHERE { ?gpu rdf:type hpc:GPU .
31 ?gpu hpc:name "Nvidia V100".
32 ?machine hpc:coprocessorModel ?gpu .
33 ?model_id hpc:targetMachine ?machine .
34 ?model_id rdf:type hpc:AIModel .
35 ?model_id hpc:name ?model_name }
36

37 # Results: machine names and AI model IDs
38 <http://example.org/cluster/lassen> <http://example.org/

AIModel/MO000001>
39 <http://example.org/cluster/lassen> <http://example.org/

AIModel/MO000002>

Listing 7. SPARQL queries to answer competency questions 4-5
1 PREFIX hpc: <https://example.org/HPC-Ontology#>
2

3 # Query for Q4: NSF project’s datasets for building
performance prediction models

4 #-------------------------------------------------------
5 SELECT ?project_id ?ds_id
6 WHERE {
7 ?project_id rdf:type hpc:Project .
8 ?project_id hpc:fundedBy "the National Science

Foundation" .
9 ?ds_id hpc:project ?project_id .

10 ?ds_id rdf:type hpc:Dataset .
11 ?ds_id hpc:subject "Performance Prediction" }
12

13 # Results: project IDs and dataset IDs
14 <http://example.org/project/PR000003> <http://example.org/

dataset/DA000007>
15 <http://example.org/project/PR000003> <http://example.org/

dataset/DA000008>
16 <http://example.org/project/PR000003> <http://example.org/

dataset/DA000009>
17

18 # Query of Q5: workflow generating AI models for NPB’s
heterogeneous mapping on AMD GPU

19 SELECT ?pid ?pname
20 WHERE {
21 ?pid rdf:type hpc:Workflow .
22 ?pid hpc:subject "Heterogeneous Mapping" .
23 ?pid hpc:name ?pname .
24

25 ?pid hpc:targetMachine ?machine_id .
26 ?machine_id hpc:coProcessor ?gpu_id .
27 ?gpu_id hpc:vendor "AMD" .
28

29 ?pid hpc:targetApplication ?app_id .
30 ?app_id hpc:name "NPB" .
31 }
32

33 # Results
34 <http://example.org/workflow/WF000020> OpenCL

Heterogeneous Mapping

VII. RELATED WORK

Due to their consistency and expressivity, numerous ontolo-
gies [35]–[38] have been developed to effectively combine
data or information from multiple heterogeneous sources. For
example, DBpedia [25], [39] extracts entities and relations
from Wikipedia to create an ontology which becomes a natural
hub for connecting datasets. Sun et al. [40] developed Geospa-
tial data ontology as the semantic foundation of geospatial
data integration and sharing. Their ontology is a framework
with three dimensions. The ontological category dimension
has general, domain, and application-level ontologies. The
content dimension has essential, morphology, and provenance
ontologies. Finally, the logic dimension has classes, relations,
properties, and instances. Google, Bing and Yahoo rely on

schema.org [21], essentially a public shared ontology, to main-
tain a list of vocabularies that developers can use to publish
structured data about web pages. This ontology also drives
features like Google’s Knowledge Graph. Brick [23], [41]
is a domain-specific ontology to enable portable applications
managing commercial buildings.

Ontologies have been studied to improve machine learning
in various aspects, including sentiment classification, answer
evaluation, personalized recommendation and so on [42]. On-
toDM [43] is an ontology of data mining. Sudathip et al. [44]
presented a machine learning ontology covering concepts from
learning, applications, techniques, and evaluation. Xu et al.
proposed an OWL ontology to make machine-learned func-
tions findable on the web [45]. VIS4ML [46] is an ontology
for visual analytics assisted machine learning. It can be used to
describe ML workflows. Hwang et al. proposed a task ontology
to enable autonomous machine learning modeling [47].

Some studies leveraged ontologies For program analyses
and optimizations. Yue et al. developed ontology-based pro-
gram analysis [48]. Liao et al. explored ontologies to enhance
domain-specific language implementations [49]. Pattipati et
al. [50] built an extensible framework for ontology-based
advanced program analysis.

VIII. CONCLUSION

This paper presents our ongoing efforts to build an on-
tology to enable FAIR datasets and AI models in the HPC
program analysis and optimization domain. We adopt a two-
level design to be lightweight and extensible. The resulting
HPC Ontology has modeled properties of essential concepts
in the domain, including computers, experiments, software,
hardware, datasets, AI models, and so on. Preliminary results
show that our design is effective to annotate both high-level
metadata and low-level details of selected sample data. The
ontology is also able to support typical competency questions
formed as SPARQL queries.

Future work will include more low-level supplement com-
ponents. Examples include more comprehensive AI model
categories and properties describing internal details of differ-
ent machine learning models. We will also add a workflow
component in order to support workflow synthesizing in HPC.
Automated techniques will be explored for generating RDF
triples describing more software, hardware, HPC datasets and
AI models. The current draft HPC Ontology is available on-
line 1 under a Creative Commons license to collect community
input. We welcome community comments and suggestions to
enhance the ontology.

ACKNOWLEDGMENT

Prepared by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344 (LLNL-CONF-826494),
the Argonne Leadership Computing Facility under Contract
DE-AC02-06CH11357, and the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Program
under Award Number DE-SC0021293.

1https://hpc-fair.github.io/ontology/

https://hpc-fair.github.io/ontology/


REFERENCES

[1] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran, “Benchmarking machine learning methods for performance
modeling of scientific applications,” in 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS). IEEE, 2018, pp. 33–44.

[2] J. Sun, S. Zhan, G. Sun, and Y. Chen, “Automated performance modeling
based on runtime feature detection and machine learning,” in 2017 IEEE
International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous
Computing and Communications (ISPA/IUCC). IEEE, 2017, pp. 744–
751.

[3] K. Singh, E. İpek, S. A. McKee, B. R. de Supinski, M. Schulz, and
R. Caruana, “Predicting parallel application performance via machine
learning approaches,” Concurrency and Computation: Practice and
Experience, vol. 19, no. 17, pp. 2219–2235, 2007.

[4] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of
performance modeling and simulation techniques for accelerator-based
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 1, pp. 272–281, 2014.

[5] T. Islam, A. Ayala, Q. Jensen, and K. Ibrahim, “Toward a programmable
analysis and visualization framework for interactive performance analyt-
ics,” in 2019 IEEE/ACM International Workshop on Programming and
Performance Visualization Tools (ProTools). IEEE, 2019, pp. 70–77.

[6] J. J. Thiagarajan, R. Anirudh, B. Kailkhura, N. Jain, T. Islam, A. Bhatele,
J.-S. Yeom, and T. Gamblin, “Paddle: Performance analysis using a data-
driven learning environment,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2018, pp. 784–793.

[7] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing performance variations in hpc
applications using machine learning,” in International Supercomputing
Conference. Springer, 2017, pp. 355–373.

[8] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of false
sharing using machine learning,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2013, pp. 1–9.

[9] J. Vetter, “Performance analysis of distributed applications using auto-
matic classification of communication inefficiencies,” in Proceedings of
the 14th international conference on Supercomputing, 2000, pp. 245–
254.

[10] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance computing
systems,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 33, 2019, pp. 9428–9433.

[11] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. Baden, “Doomsday:
predicting which node will fail when on supercomputers,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 108–121.

[12] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proceedings of the
23rd ACM SIGPLAN symposium on principles and practice of parallel
programming, 2018, pp. 94–108.

[13] H. Xu, M. Emani, P.-H. Lin, L. Hu, and C. Liao, “Machine learning
guided optimal use of gpu unified memory,” in 2019 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC).
IEEE, 2019, pp. 64–70.

[14] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F. M. Ciorba,
“A learning-based selection for portfolio scheduling of scientific ap-
plications on heterogeneous computing systems,” Parallel and Cloud
Computing, vol. 3, no. 4, pp. 66–81, 2014.

[15] K. Fagnan, Y. Nashed, G. Perdue, D. Ratner, A. Shankar, and S. Yoo,
“Data and models: a framework for advancing ai in science,” USDOE
Office of Science (SC)(United States), Tech. Rep., 2019.

[16] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne et al., “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[17] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase,
R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler et al., “Owl 2 web
ontology language: Structural specification and functional-style syntax,”
W3C recommendation, vol. 27, no. 65, p. 159, 2009.

[18] M. Uschold and M. Gruninger, “Ontologies: Principles, methods and
applications,” The knowledge engineering review, vol. 11, no. 2, pp.
93–136, 1996.

[19] S. Staab and R. Studer, Handbook on ontologies. Springer Science &
Business Media, 2013.

[20] J. Ison, M. Kalaš, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam,
J. Malone, R. Lopez, S. Pettifer, and P. Rice, “Edam: an ontology
of bioinformatics operations, types of data and identifiers, topics and
formats,” Bioinformatics, vol. 29, no. 10, pp. 1325–1332, 2013.

[21] R. V. Guha, D. Brickley, and S. Macbeth, “Schema.org: evolution of
structured data on the web,” Communications of the ACM, vol. 59, no. 2,
pp. 44–51, 2016.

[22] M. A. Jensen, V. Ferretti, R. L. Grossman, and L. M. Staudt, “The nci
genomic data commons as an engine for precision medicine,” Blood,
vol. 130, no. 4, pp. 453–459, 2017.

[23] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal et al., “Brick: Metadata
schema for portable smart building applications,” Applied energy, vol.
226, pp. 1273–1292, 2018.

[24] S. L. Weibel and T. Koch, “The dublin core metadata initiative,” D-lib
magazine, vol. 6, no. 12, pp. 1082–9873, 2000.

[25] P. N. Mendes, M. Jakob, and C. Bizer, “Dbpedia: A multilingual cross-
domain knowledge base.” in LREC. Citeseer, 2012, pp. 1813–1817.

[26] “Top500 List, June 2021,” https://www.top500.org/lists/top500/2021/06/,
June, 2021.

[27] “Sparql for tables: Turn csv into rdf using sparql syntax,” https://tarql.
github.io/, accessed: 2021-06-09.

[28] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin,
“Dataracebench: a benchmark suite for systematic evaluation of data
race detection tools,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1–14.

[29] C. Cummins, Z. Fisches, T. Ben-Nun, T. Hoefler, M. O’Boyle, and
H. Leather, “ProGraML: A Graph-based Program Representation for
Data Flow Analysis and Compiler Optimizations,” in Thirty-eighth
International Conference on Machine Learning (ICML), 2021.

[30] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“Mlgo: a machine learning guided compiler optimizations framework,”
arXiv preprint arXiv:2101.04808, 2021.

[31] C. Phillipsy, “Hpc energy research,” 2016. [Online]. Available: https:
//cscdata.nrel.gov/#/datasets/d332818f-ef57-4189-ba1d-beea291886eb”

[32] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola, “Sobol tensor trains
for global sensitivity analysis,” Reliability Engineering & System Safety,
vol. 183, pp. 311–322, 2019.

[33] C. Nugteren and V. Codreanu, “Cltune: A generic auto-tuner for opencl
kernels,” in 2015 IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip. IEEE, 2015, pp. 195–202.

[34] R. Shrivastava, “Gpu kernel performance dataset,” https://www.kaggle.
com, 2020.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A large ontology
from wikipedia and wordnet,” Journal of Web Semantics, vol. 6, no. 3,
pp. 203–217, 2008.

[36] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of cyc.” in AAAI Spring Symposium:
Formalizing and Compiling Background Knowledge and Its Applications
to Knowledge Representation and Question Answering. Citeseer, 2006,
pp. 44–49.

[37] M. A. Sicilia, E. Garcia, S. Sanchez, and E. Rodriguez, “On integrating
learning object metadata inside the opencyc knowledge base,” in IEEE
International Conference on Advanced Learning Technologies, 2004.
Proceedings. IEEE, 2004, pp. 900–901.

[38] A. Pease, I. Niles, and J. Li, “The suggested upper merged ontology: A
large ontology for the semantic web and its applications,” in Working
notes of the AAAI-2002 workshop on ontologies and the semantic web,
vol. 28, 2002.

[39] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web.
Springer, 2007, pp. 722–735.

[40] K. Sun, Y. Zhu, P. Pan, Z. Hou, D. Wang, W. Li, and J. Song, “Geospatial
data ontology: the semantic foundation of geospatial data integration and
sharing,” Big Earth Data, vol. 3, no. 3, pp. 269–296, 2019.

[41] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal et al., “Brick: Towards
a unified metadata schema for buildings,” in Proceedings of the 3rd

https://www.top500.org/lists/top500/2021/06/
https://tarql.github.io/
https://tarql.github.io/
https://cscdata.nrel.gov/#/datasets/d332818f-ef57-4189-ba1d-beea291886eb"
https://cscdata.nrel.gov/#/datasets/d332818f-ef57-4189-ba1d-beea291886eb"
https://www.kaggle.com
https://www.kaggle.com


ACM International Conference on Systems for Energy-Efficient Built
Environments, 2016, pp. 41–50.

[42] L. Rachana and S. Shridevi, “A literature survey: semantic technology
approach in machine learning,” Advances in Smart Grid Technology, pp.
467–477, 2021.

[43] P. Panov, S. Džeroski, and L. Soldatova, “Ontodm: An ontology of
data mining,” in 2008 IEEE International Conference on Data Mining
Workshops. IEEE, 2008, pp. 752–760.

[44] K. Sudathip and M. Sodanil, “Ontology knowledge-based framework
for machine learning concept,” in Proceedings of the 18th International
Conference on Information Integration and Web-based Applications and
Services, 2016, pp. 50–53.

[45] J. Xu, H. Wang, and H. Trimbach, “An owl ontology representation for
machine-learned functions using linked data,” in 2016 IEEE Interna-
tional Congress on Big Data (BigData Congress). IEEE, 2016, pp.
319–322.

[46] D. Sacha, M. Kraus, D. A. Keim, and M. Chen, “Vis4ml: An ontology
for visual analytics assisted machine learning,” IEEE transactions on
visualization and computer graphics, vol. 25, no. 1, pp. 385–395, 2018.

[47] K. S. Hwang, K. S. Park, S. H. Lee, K. I. Kim, and K. M. Lee,
“Autonomous machine learning modeling using a task ontology,” in 2018
Joint 10th International Conference on Soft Computing and Intelligent
Systems (SCIS) and 19th International Symposium on Advanced Intelli-
gent Systems (ISIS). IEEE, 2018, pp. 244–248.

[48] Y. Zhao, G. Chen, C. Liao, and X. Shen, “Towards ontology-based
program analysis,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[49] C. Liao, P.-H. Lin, D. J. Quinlan, Y. Zhao, and X. Shen, “Enhancing do-
main specific language implementations through ontology,” in Proceed-
ings of the 5th International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing, 2015,
pp. 1–9.

[50] D. K. Pattipati, R. Nasre, and S. K. Puligundla, “Opal: An extensible
framework for ontology-based program analysis,” Software: Practice
and Experience, vol. 50, no. 8, pp. 1425–1462, 2020.


	Introduction
	Background
	The FAIR Data Principles
	Ontologies

	Design Philosophy
	High-Level Core Ontology
	Basic Scenario and Naming Convention
	Top level Concept: Thing
	Activity and Experiment
	Artifact and Data
	Software
	Hardware and Computer

	Low-level Components of HPC Ontology
	A Coprocessor: NVIDIA GPU
	A GPU Performance Dataset: XPlacer

	Preliminary Results
	Providing Metadata for Top500 Supercomputers
	Providing Metadata for Datasets and AI Models
	Encoding GPU Profiling Dataset Stored in a CSV File
	Enabling Various Queries

	Related Work
	Conclusion
	References

