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Abstract—Workflow synthesis is important for automatically
creating the data processing workflow in a FAIR data man-
agement system for HPC. Previous methods are table-based,
rigid and not scalable. This paper addresses these limitations
by developing a new approach to workflow synthesis, interactive
NLU-powered ontology-based workflow synthesis (INPOWS). IN-
POWS allows the use of Natural Language for queries, maximizes
the robustness in handling concepts and language ambiguities
through an interactive ontology-based design, and achieves supe-
rior extensibility by adopting a synthesis algorithm powered by
Natural Language Understanding. In our experiments, INPOWS
shows the efficacy in enabling flexible, robust, and extensible
workflow synthesis.

Index Terms—Ontology, Workflow, Synthesis, HPC, FAIR,
NLP

I. INTRODUCTION

Workflow synthesis is a technology that assembles a number
of processing units (e.g., scripts, commands, APIs) into an
executable, the execution of which produces results requested
by an input query. Workflow synthesis plays an important role
in improving productivity, especially for scientific domains
that exhibit a high complexity in data and sets of operations.
Example use of workflow synthesis exists in remote sens-
ing [61], mass spectrometry-based proteomics [38], and many
other domains.

Workflow synthesis is becoming more important for HPC as
well, partially driven by the rapid growth of HPC data and the
need for better ways to share and (re)use them in HPC. HPC
contains many kinds of tasks and deals with a large variety
of data. Recent years have witnessed an increasing interest
in building up FAIR (Findable, Accessible, Interoperable,
Reproducible) repositories so that the data can be easily shared
and reused. An example is a recently proposed framework,
HPC-FAIR [55]. As many datasets are uploaded by different
users into the repository, it is essential to have a way to help
users make sense of the data in the repository and quickly
put together a workflow that can retrieve the relevant datasets,
reformat them when necessary, process them, and extract out
the finally useful elements. Automatic workflow synthesis is
a solution for meeting the needs.

There have been some efforts trying to automate workflow
synthesis (or composition). The topic of automated synthesis
and planning of workflows has been discussed at least since

the 1990s [29], [45], [50], and gained new attention in the early
2000s when (semantic) web services became popular [1], [46].
Example frameworks include the semantic service composition
approaches in myGrid [4], [27], agent-based approaches [30],
OWL-based SADI framework with its SHARE client for web
service pipelining [57], and the PROPHETS framework that
makes use of temporal-logic synthesis [19]–[21], [36].

All the prior approaches depend on rich, consistent com-
ponent annotations in precise terms. In the work on mass
spectrometry-based proteomics [38], for instance, both user’s
intents and the annotations of the inputs, outputs, operations
of every building block (software tools) of the workflows
in the domain must be written in EDAM, a standard set of
terms created by the Bioinformatics community that defines
the topics, operations, types of data and data identifiers, and
data formats, relevant in data analysis and data management
in life sciences.

The prior approach works for a domain that is stable with a
limited set of concepts and types of entities, but does not work
for HPC. HPC is a loose defined domain, with a multitude of
types of data, many and continuously expanding operations,
and unlimited number of possible tasks. Even if it is possible
to create a fixed vocabulary to capture most commonly used
concepts, operations, and types of data objects, it would be
large and complex, difficult for users to use consistently.

This work aims to address the problem by exploring a new
approach to workflow synthesis. Our proposal is interactive
NLU-powered ontology-based workflow synthesis (INPOWS).
INPOWS has several distinctive features.

(i) It offers flexibility, removing the rigidity of prior methods
by allowing the use of Natural Language as its user interface.
Users can submit their queries written in free Natural Lan-
guages (NL) (currently, English). For general users, NL is the
most intuitive way of expression in many domains; such an
interface addresses the shortcomings of rigid tables, offering
flexibility for users.

(ii) It maximizes the robustness in handling concepts in
a domain by building the synthesis on Ontology. Ontology
refers to a set of concepts and categories in a subject area
or domain. It also shows their properties and the relations
between them. An ontology of a domain consists of a vocab-
ulary that represents the concepts, categories, properties, and



relations in the domain. It not only offers a way to standardize
expressions in the domain, but more importantly, by organizing
concepts and their relations formally. In the end, ontology
makes automatic reasoning of the concepts in the domain
possible. The reasoning enables INPOWS to bridge the gaps
between the concepts used in a query and the concepts in
datasets.

(iii) INPOWS achieves robustness in handling NL am-
biguities through an interactive design. NL queries can be
ambiguous. INPOWS addresses it by popping up hints and
choices when a user inputs her query; it helps clarify the intent
of the user and simplifies the synthesis.

(iv) INPOWS achieves superior extensibility by adopting
a synthesis algorithm powered by Natural Language Un-
derstanding (NLU). Unlike common data-driven approaches,
the NLU-powered synthesis algorithm does not need a time-
consuming training process on hundreds of thousands of la-
beled examples. It draws on the understanding of the semantic
and syntax of the domain by analyzing the domain documenta-
tions. By eliminating the requirement of large data collection,
this feature eases the building of INPOWS for a domain. More
importantly, it makes the domain easily extensible. When a
new script is added into a domain, the user just needs to
provide a description of the script (usually in one or several
sentences); INPOWS can then naturally take that new script
into its synthesis process.

We developed INPOWS and integrated it into a FAIR
data management system for HPC, named HPC-FAIR. Our
experiments show that INPOWS can achieve 80% synthesis
accuracy on 60 HPC-FAIR workflow synthesis tasks. Overall,
INPOWS makes the following major contributions:

• To the best of our knowledge, INPOWS is the first
workflow synthesizer that allows NL queries and at the
same time achieves robust results (over 80% accuracy)
on complex continuously changing domains.

• INPOWS proposes the first method that seamlessly inte-
grates ontology with NLU-powered workflow synthesis.

• INPOWS develops an interactive design to resolve the
difficulties that NL ambiguity imposes on NLU-powered
workflow synthesis.

• Evaluated empirically, INPOWS shows 80% synthesis
accuracy for its effectiveness.

II. BACKGROUND

This work uses HPC-FAIR as the basis for its hosting of a
wide range of HPC data to meet many kinds of HPC tasks.
This section provides some background of HPC-FAIR and
code synthesis.

A. HPC-FAIR and HPC Ontology

The FAIR Guiding Principles [58] aim to improve the
findability, accessibility, interoperability, and reusability of
digital content by making them both human and machine
actionable. HPC-FAIR [55] is a framework to implement the
FAIR principles for HPC’s ML models and datasets. Within
this framework, information about HPC machine learning data

...
hpc:Hardware hpc:Dataset

"CPUTrace.csv"

"frequency"

hpc:CPUhpc:Memory

rdfs:subClassOf
rdfs:subClassOf

hpc:cpuFrequency

dataset_1
hpc:name

instanceOf

hpc:hasColumn

hpc:hasProperty
schema:domainIncludes column_1

hpc:DataColumn
instanceOf

hpc:colName

...
instanceOf

...

Figure 1. HPC Ontology

and models from different sources is collected and stored
within a Resource Description Framework (RDF) database.

Within HPC-FAIR, the HPC ontology [23] serves as a core
component to power the RDF database and enable ‘Interop-
erability’ and ‘Reusability’ of the training datasets and AI
models in the HPC domain. An ontology provides a common
vocabulary to represent and share the domain concepts. It
is a formal specification for describing the knowledge about
properties, relationships and entities in a domain. The HPC
ontology captures information in the HPC domain, using a
formal knowledge representation of Web Ontology Language
(OWL). It provides descriptive, administrative and statistical
information about the properties of major concepts in the HPC
domain such as computers, projects, AI models, software,
hardware, datasets etc.

The ontology is built on a set of guidelines which cater to
our requirements to make dataset and AI models FAIR for
the community. The ontology design consists of two parts. A
high-level ontology to capture core components of the domain
such as dataset and AI models. A set of low-level components
represent detailed, internal information of various sub domains
such as compilers, GPUs, performance data etc. A single
namespace with a prefix named ‘hpc:’ is used to include all
concepts and relations under the HPC domain. For example,
hpc:Dataset is used to represent the dataset concept while
hpc:wasAttributeTo indicates the relation between a dataset
and a person.

The information in ontology is represented in an RDF (Re-
source Description Framework) format of (subject, property,
object), which can be visualized as nodes (for subjects and
objects) and edges (for properties). Figure 1 shows example
information stored in the HPC ontology. For example, (‘Mem-
ory’, ‘SubClassof’, ‘Hardware’) triple states that “Memory is
a sub class of Hardware”. dataset 1 named “CPUTrace.csv”
is an instance of class Dataset. This dataset instance has a
column named “frequency”. The column is related to the
property named “cpuFrequency”, which in turn is a CPU
related property as encoded using “schema:domainIncludes”.
It is a part of the HPC-FAIR data uploading process to annotate
columns to the associated properties. We use an RDF query
language named SPARQL [41] to extract information from
ontology to synthesize our workflow.

B. Workflows Synthesis on HPC-FAIR

HPC-FAIR hosts HPC datasets and models uploaded by var-
ious users. Thus, the data and models needed by an user may
be the assembled result from multiple sources. The workflow



Table I
WORKFLOW QUERY AND EXPRESSION EXAMPLES

ID Type Workflow NL query Workflow expression
1 Data Manipulation Merge dataset “X.csv” and dataset “Y.json” MergeDataset(csvFile(string(“X.csv”)), json2csv(jsonFile(string(“Y.json”))))
2 Ontology query Get datasets whose subject is “GPGPU” GetDataset(datasetName(string(“lassen overhead, performance results dataset”)))

3 Combination Get CPU related columns from
dataset “CPUTrace.csv”

GetColumn(columnName(string(“flops”,“frequency”)),
datasetName(string(“CPUTrace.csv”)))

synthesis task in HPC-FAIR aims to automatically create a
data processing workflow which, from existing datasets, can
automatically derive the data and models that meet the needs
of a user based on her queries.

The common needs of users on HPC-FAIR include data
manipulations and knowledge queries. Table I shows three
example workflow synthesis tasks. The data manipulation
workflow (Table I(1)) includes tasks such as data merging,
data extraction, file type transformation, executing user up-
loaded scripts, etc. The Ontology workflow (Table I(2)) queries
knowledge from the HPC-Ontology based on certain proper-
ties, such as the subject of the dataset, the author of a dataset,
etc. These two types of workflow can also be combined
together to manipulate the data based on the knowledge from
Ontology. For example, the workflow query in Table I(3) is
used to extract the columns that are related to CPU from a
dataset.

To enable the flexibility for users to express their intents,
the workflow queries are Natural Language sentences that can
express the tasks that are expected to perform by the workflow.
For example, Table I(1) indicate the task of merging two
dataset with given dataset names. Table I(2) asked for the
dataset with specific conditions, which is the subject of the
dataset is “GPGPU”.

We use workflow expressions to represent the workflows.
The execution of workflow expression is the same as function
calls in Python, which calls the inner functions first, and the
return values of the inner functions become the parameters
of the outer functions. For example, the workflow expres-
sion in Table I(1) merges two dataset. When executing, the
API csvFile first reads the file “X.csv”. Then the API
jsonFile reads the file “Y.json”, and converts it to csv for-
mat via API json2csv. Finally, the API MergeDataset
merges two files.

C. NLU-driven Synthesizer

This work builds on the basis of HISyn [32], a Natural Lan-
guage Understanding (NLU)-driven code synthesizer. Taking
the NL query as input, it uses modern NLP techniques to
extract key information and their relations inside the query.
By comparing the semantics of the key information and the
API descriptions of the DSL, it matches the APIs that are
related to the key information, and constructs code expressions
following the grammar of the DSL. There are three reasons to
select HISyn as the workflow synthesizer.

1) NL input: Unlike inputs using a query language or
domain specific language, a natural language input allows
users to freely express their intents without learning complex
grammar or knowledge. HISyn, as a NLU-driven synthesizer,

takes NL as an input query and automatically generates the
code expression that can fulfill the user’s intents.

2) No need for training: Many NL-based synthesizers
require examples to train a model to synthesize the codes [5],
[24]. The number of training examples varies from thousands
to millions. However, as a new domain, HPC-FAIR does not
have such a large number of training cases. On the contrary,
HISyn employs grammar graph-based translation algorithms,
which take the mentioned IR as input, and generate the target
code expression without any training.

3) Cross-domain extensibility: HPC-FAIR collects data and
models from different sources and projects. Therefore, the
workflow synthesizer should be extensible to adept to the
growing number of resources. HISyn features cross-domain
extensibility. With modular framework architecture of HISyn,
it can support the code synthesis tasks from different domains.
The HISyn design encapsulates domain-specific elements into
separate modules equipped with an easy-to-use interface.

III. CHALLENGES AND SOLUTIONS OVERVIEW

INPOWS features flexible NL inputs, robustness in handling
concepts and NL ambiguities, and superior extensibility. It
is inspired by HISyn, a NLU-driven code synthesizer. There
is yet a large gap between code synthesizer and workflow
synthesis for HPC. We list several major challenges in this
section.

The first challenge is to create a formal representation of
the space of workflows in the domain. As a code synthesizer,
HISyn uses domain-specific language (DSL) as the abstraction
of the set of possible expressions in a target domain. So the
first fold of questions to answer for workflow synthesis via
NLU are whether DSL can serve as the right abstraction for
the space of workflows and how to represent the scripts and
functions inside the synthesizer for reasoning.

The second challenge is on how to robustly handle NL
inputs. On one hand, HISyn synthesizes code expressions
based on DSL knowledge, hence the synthesis search space is
the DSL grammar. On the other hand, INPOWS aims to handle
the domain knowledge stored in Ontology, hence the Ontology
becomes another search space. Thus, there are two different
search spaces in the framework. However, the NL queries are
written in free NL, containing information related to both
search spaces. Therefore, how to identify the corresponding
search space of the key information inside the NL query is
another challenge.

The third challenge is on bridging the gaps between the
concepts in the user queries and the concept hierarchy in
HPC Ontology. As mentioned in Section II-A, SPARQL query
language is usually used in searching for information inside the
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Figure 2. Overall framework of INPOWS

Ontology. To take full advantage of the Ontology, the solution
must be able to generate appropriate SPARQL queries from
the input queries expressed in NL.

Our exploration addresses these challenges and produces
INPOWS, a workflow synthesis framework that generates
the workflow expressions which can be directly executed
inside a Python script. The overall framework of INPOWS
is shown in Figure 2. Besides the HISyn that synthesizes
workflow expressions, the framework includes three new mod-
ules: Documentation Generator, DSL/Ontology query split,
and Ontology Module. These three new modules, together with
the whole framework design, solve the above challenges.

Specifically, to address the first challenge, before the work-
flow synthesis task starts, Document Generator (marked using
0 in Figure 2) is used to prepare the documents needed by
HISyn to synthesize the workflow expression. We define a
DSL that can include both data manipulation APIs and the
operation scripts (building blocks of workflows) uploaded by
users. Inside this module, the operation scripts are abstracted
into APIs of the DSL. They are added into the DSL grammar
and documentation, which are two essential documents for
HISyn to synthesize the workflow expression. This module
builds the foundation of the workflow synthesis.

Next, when INPOWS receives NL workflow queries, it
sends the query to the DSL/Ontology query split (1), which
solves the second challenge. The split is an interactive module.
The module scans the query to identify the words and phrases
that relate to Ontology, and replaces them with corresponding
Ontology objects or properties. The queries with replaced
Ontology components are then shown to users to determine
the one that meets their intents. After that, the correct query
is split into two parts. The DSL query is used to synthesize
the workflow expression based on the DSL search space. The
ontology conditions are used to create a SPARQL query to
acquire the knowledge from HPC Ontology.

The Ontology Module (3) takes the Ontology conditions
from the split as input, together with the information of the
intermediate synthesis results, code generation tree (CGT),
from the backend of HISyn (2), to generate the SPARQL query
that can search for the corresponding information inside the
HPC Ontology. The query results are then used to replace the
special nodes inside the CGT to generate the final workflow
expression (4). Thus this module resolves the third challenge.

IV. INPOWS

This section explains the design of INPOWS. It first intro-
duces a set of terms and definitions used in the framework, and
then explains the document generator and the overall workflow
synthesis process with a running example (Figure 3).

A. Prerequisite

There are three data structures/concepts that appear during
the synthesis process: the grammar and grammar graph that
are used by HISyn as the search space, the dependency graph
that represent the input NL query and serves as an intermediate
result (IR) between the front end and back end of HISyn, and
the code generation tree that represent the synthesis results.

1) Grammar and grammar graph: The context free gram-
mar (CFG) is used to represent the DSL. A CFG is a quadruple
(T ,NT ,S,P) [7], i.e. (terminal symbols, nonterminal sym-
bols, start symbol, productions). Figure 4 shows the grammar
for workflow synthesis domain.

The grammar graph is the graph representation of the CFG.
It is a directed graph transformed from DSL grammar by
HISyn. It defines the search space for the code generation
task, and the code generation problem is transformed to the
problem of finding a subgraph called code generation tree
(defined later) from the grammar graph.

2) Dependency graph: The dependency graph is the output
of HISyn’s front end. It is a directed acyclic graph. The nodes
of the dependency graph are the tokens in a NL query. One
token contains the word, lemma, part-of-speech (POS) tag, and
named entity label. The edges of the dependency graph are
the dependency relations among the tokens. The dependency
graph is used as the basis of the intermediate representation
in guiding code generation in the back end. Figure 3(b) shows
a dependency graph of query 3 in Table I.

3) Code generation tree: A code generation tree (CGT) is
a subgraph of a grammar graph. A CGT is a directed acyclic
graph whose undirected counterpart is a tree. The root of
a CGT is a non-terminal node that corresponds to the start
symbol of the grammar. During the synthesis process, HISyn
searches for the paths on the grammar graph that represent the
semantic of dependency edges. The found paths are combined
into CGTs, which then get transformed into code expressions
as synthesis results. Figure 3(c) shows a code generation tree
that represents the workflow expression in Table I(3).

B. Workflow DSL

As discussed in previous sections, HISyn [32] is the optimal
synthesizer for workflow synthesis in HPC-FAIR due to its NL
input, free of training and cross-domain extensibility features.
As HISyn synthesizes the target DSL code expressions based
on the DSL grammar and API descriptions, to synthesize the
workflow, the first challenge is to define the workflow DSL.
The Document generator module is designed to generate the
grammar and API description files to address this challenge.
This subsection first describes the APIs and variables that are
used inside the DSL, and then introduces the overall DSL.
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Figure 3. Running example

1) APIs and variables: APIs and variables are elements in
the DSL. To generate the DSL, we need to define the APIs
and variables first.

An Ontology API, ontology, is created to be mapped with
the Ontology related contents inside the NL query. During
the synthesis process, the Ontology contents are wrapped and
mapped to this Ontology API, which serves as a placeholder
inside the CGTs (Figure 3(c)). After getting the SPARQL
query results from the Ontology module, the Ontology API
is replaced with the results inside the CGT. The return type of
this API is “ ontology”. Any APIs that are related with classes
or properties inside Ontology could call this API. For example,
the API columnName takes the names of columns inside the
dataset. It can either directly take a string with actual column
names as input, or take the Ontology API as input since the
SPARQL query returns the name of the columns.

Besides this special API, the rest of the APIs in the DSL
have two categories, the data manipulation APIs and the
project APIs.

Data manipulation APIs are a set of APIs defined to handle
the data processing, such as fetching the data, transferring
data file types and extracting specific columns from a dataset.
These APIs are designed to support basic data manipulation
operations that might be used by users, and fill the gap between
the models and data from different projects. For example,
a model M A from project A requires a csv file as input,
while the dataset D B from project B is uploaded in a json
format. If a user wants to train a model M A with data
D B, the file type transfer API json2csv is necessary
inside the workflow to perform the transformation. The final
workflow representation is M_A(json2csv(D_B.json)).
In Figure 4, MergeDataset, GetColumn, json2csv are
all the data manipulation APIs.

Besides, there are also some APIs that represent the seman-
tic of the arguments in a data manipulation API. For example,
the API columnName is derived from the first argument
(nonterminal) of API GetColumn, which means the first
argument is the names of the dataset. These APIs are semantic
APIs. They can accept either string or Ontology API as the

_workflow := _string | _list | _array | _file |_number | ...
_string := string(STRING) | GetHardware(_hwName) | ...
_array := GetColumn(_columnName,_datasetName) 
  | MergeDataset(_csvFile, _csvFile) | … 
_csvFile := json2csv(_jsonFile) | csvFile(_string) 
  | logsToDataset_XPlacer(_nsight_log) |...
_datasetName := datasetName(_ontology_arg) 
_columnName := columnName(_ontology_arg)
_hwName := hardwareName(_ontology_arg)
_ontology_arg:= _string | _ontology  
_ontology := ontology()
...

API: datasetName 
description: matches dataset names 
ontology_class: hpc:dataset 
ontology_subject: hpc:name 

API: MergeDataset 
description: Merge   
 data in two csv
 files

Figure 4. Workflow DSL grammar

argument. In the CGT, if a semantic API is the parent node
of the Ontology API, it will provide the query subject and
scope for SPARQL query generation (see section V-B). Thus,
for each semantic API, besides NL description, there are two
extra entries, ontology class and ontology subject, to store the
information needed by the Ontology module.

Project APIs are a set of APIs automatically created from
the user provided data flow, such as dataset: extraction, prepro-
cessing, and model: training, fine-tuning, inference). In HPC-
FAIR, users can upload scripts used in their project’s dataflow.
These scripts can be used to train the model with other dataset.
To synthesis workflow with these scripts, project APIs are
created with script project as the API name to represent these
scripts in the DSL. The input, output and the description of
the project APIs are extracted from the HPC Ontology. For
example, in Figure 4, the XPlacer project has one script named
“logs to dataset” with nsight log file as input and returns a csv
file. The project API logsToDataset_XPlacer is created
and added into the API documents with its description, and
linked to the DSL grammar based on its input and output. The
document generator can automate the project API creation,
directly create and update the project APIs based on updates
in the HPC Ontology.

2) Overall DSL: The context free grammar (CFG) is used
to represent the DSL. The partial of the DSL is shown in
Figure 4. The terminals T of the DSL are all APIs described
above. The start symbol is the nonterminal ntworkflow that



represents a workflow expression. Then the next step is to
decide the nonterminals NT and their production rules P .

The input and output information is used as the nonterminals
to connect the APIs. Specifically, for an API Ai, its return type
becomes a nonterminal ntreturn, and the Ai itself becomes
one of the production rules of ntreturn. Then the input
information of Ai also becomes a nonterminal ntinput and
becomes the parameter of the Ai. In all, the basic syntax of
a production rule is ntreturn := Ai(nt

∗
input), where ∗ means

an API can have multiple inputs. All the APIs that return the
same type are derived from the same nonterminal.

For example, in Figure 4 the data manipulation API
json2csv takes a json file as input, and returns a csv
file. The project API logsToDataset_XPlacer takes an
nsight log file as input, and also returns a csv file. Therefore,
the nt csvFile can derive both APIs, and each API has their
own nonterminal (nt jsonFile and nt nsight log) as the input.

Besides the DSL grammar, the API documentation is also
needed for HISyn to synthesize the workflow expression. We
write NL descriptions for each data manipulation API, and
extract the script descriptions from the HPC ontology as the
description of the project APIs.

Please note that all the knowledge from the Ontology that
feeds to INPOWS is supposed to be created when users
upload the datasets and models to HPC-FAIR to enhance
the interoperability and reusability. INPOWS does not require
extra efforts from data providers.

C. Workflow synthesis

With grammar and API documentation settled, INPOWS
then starts synthesizing the workflow expression with HISyn.
Figure 3 shows the workflow synthesis process of the workflow
query in Table I(3). The following steps refer to the step
numbers shown in Figure 3.

Step 1. DSL/Ontology query split: As previously mentioned,
another challenge is that a NL workflow query could involve
two search spaces, the DSL and the HPC-FAIR Ontology.
Thus, when receiving the NL query, the first step is to parse
the query and split the DSL and Ontology contents. The
DSL/Ontology query split module (section V-A) finds the
possible ontology related components by analyzing the NLP
parsing results and compare it with descriptions of Ontology
concepts and properties. The matched concepts or properties
are then replaced with special formats. The final queries that
are annotated with Ontology components are called formatted
queries. All the formatted queries are shown to the user and let
them select the correct query through an interactive process.

Then the split module extracts the Ontology component
inside the formatted query, and replaces it with a placeholder
word, which is mapped to the Ontology API directly in the
later synthesis steps. A query with placeholder is called a DSL
query, since it only contains the information related to DSL.
The Ontology components are passed to the Ontology module
to generate the SPARQL queries that acquire knowledge from
Ontology. Now the key elements in the query that are related
to DSL and Ontology are split. They are processed separately

Figure 5. Workflow implementation in Python

in the following steps. Figure 3(a) shows the query parsing
process. The detailed description of this module will be given
in section V-A.

Step 2 and 3. HISyn Synthesis: The DSL query sentence
is passed to the HISyn. HISyn generates the dependency
graph (Step 2, Figure 3(b)) that shows the relation of the key
information inside the DSL query, and synthesize the code
generation tree (CGT) (Step 3) in the DSL with the Ontology
API (Figure 3(c)).

Step 4. Acquire knowledge from Ontology: The knowledge
is acquired from Ontology through the Ontology module
(Figure 3(d)). The inputs of Ontology module are Ontology
conditions from DSL/Ontology split and the CGT from HISyn.
The module automatically checks the information inside the
inputs, creates the SPARQL query that searches for the knowl-
edge inside the Ontology, and returns the ontology query
results. The detailed description will be given in section V-B.

Step 5 and 6. Workflow expression generation: The
SPARQL query results are used to replace the Ontology API
in the CGT. With the CGT that contains all the information,
HISyn then generates the final workflow expression.

D. Workflow implementation and execution

Next, INPOWS executes the workflow to fulfill users’ inten-
tion. The data manipulation APIs are defined and implemented
by ourselves. On the contrary, the project APIs needs to be
implemented to run these scripts.

The implementation of project APIs are also automatically
generated by the document generator when defining these APIs
from Ontology. While uploading scripts to HPC Ontology,
besides the name, inputs and outputs, the script path, file
type and the running command for the scripts should also
be provided as suggested by HPC-FAIR. For example, a
python script logs to dataset.py is a data processing step in
project XPlacer. This path of the script is xx/XPlacer/scrip-
t/log to dataset.py, and its execution command is “python3
log to dataset.py param1”. Then the implementation of API
logsToDataset_XPlacer (INPOWS uses python for
workflow implementation) is shown in Figure 5 line 3-5. A
bash command is created by joining the execution command,
path to script and arguments, then executed with system
package. While executing, it only needs to import the APIs
involved in the workflow expression, and run the workflow
expression in a python script, such as line 7-8 in Figure 5.

V. INTERACTION WITH ONTOLOGY

The previous section IV-C introduces the overall work-
flow synthesis process. It briefly mentioned two modules



VB | Get
NNP | CPU
NNS | columns
NP | CPU related columns
NN | dataset
...

hpc: CPU 
type: concept
desc: concept that related to CPU

<schema:domainIncludes
hpc:CPU>

Get <schema:domainIncludes hpc:CPU> columns from dataset ".." 4

1 2

3

Query: Get CPU related columns from dataset "CPUTrace.csv"

Figure 6. DSL/Ontology query split

that interact with Ontology: the DSL/Ontology module that
identifies and formats the Ontology related components inside
the original NL query; the Ontology Module that creates the
SPARQL queries and acquires knowledge inside Ontology.
This section describes these two modules in more detail.

A. DSL/Ontology query split

INPOWS uses natural language (NL) as the input, which
provides flexibility and convenience to the user. However, it
also brings complexity to the synthesis task. Compared to
traditional program synthesis whose search space is a target
DSL, INPOWS faces an additional search space, Ontology.
Thus, it is essential to differentiate the components inside
the NL query that refer to the DSL and Ontology, split and
send them to designated modules for further processing. The
DSL/Ontology split module (i.e. the split) is designed to deal
with such tasks.

Currently INPOWS supports two types of ontology related
workflow queries, the property query and the concept query.
The property query searches for the subject with certain
properties. These properties usually link to the corresponding
Ontology properties such as hpc:license and hpc:subject. For
example, in Table I(2), it queries the property hpc:subject,
and the replacement of the ontology component in the query
is <hpc:subject “GPGPU”>.

The concept query searches for the hierarchical information
from the Ontology concepts. These concepts usually link
to certain columns of datasets as related property domains
of the columns. For example, in Figure 1, the RDF triplet
(column 1, hpc:hasProperty, hpc:cpuFrequency) indicates that
column 1 is linked to a property hpc:cpuFrequency.
Moreover, “hpc:cpuFrequency” is a property used to describe
a concept named “hpc:CPU” as indicated by the triplet
of (hpc:cpuFrequency, schema:domainIncludes, hpc:CPU).
Therefore, if the user wants to search for columns that are
related with the concept of CPU, we can get column 1 and
its name “frequency” from Ontology.

To support these two types of queries, the query split firstly
needs to identify the Ontology components in the query. Then
it replaces the Ontology components with special tokens, so
that the split Ontology and DSL portions in the query can be
processed by designated modules of INPOWS . The following
subsections explains the details of these two steps.

1) Identify and map Ontology components: After receiving
the NL queries, the first step is to identify the Ontology com-
ponents. The split first parses the query with an NLP parser.
The parser labels the part-of-speech (POS) for the query based
on the English grammar. Based on our observation in HPC
Ontology, the Ontology properties and concepts are typically

nouns, noun phrases and verbs. Thus the split extracts the
words and phrases with these POS annotations. These words
and phrases become the Ontology candidates. For example,
Figure 6(1) shows the potential words and phrases that might
refer to knowledge in Ontology.

Both Ontology properties and concepts are called Ontology
tags. Now the goal is to find the correct Ontology tags for each
Ontology candidate. Each Ontology tag has a NL description
to describe its semantics, as shown in Figure 6(2). The split
maps the candidates to tags based on these NL descriptions.
Specifically, in each Ontology candidate, if a word or its
synonyms are also inside the description of an Ontology tag,
this tag is a mapping of that candidate words. The word
mapping is case-insensitive, and it compares the words with
lemmatization and stemming to improve the robustness of
mapping. For example, in Figure 6(1), the noun word CPU
is mapped to Ontology concept hpc:CPU. Besides, inside an
Ontology candidate phrase, if more than one word can be
mapped to the same Ontology tag, then this tag is more likely
to represent the meaning of the matched portion of the phrase.
For example, in Figure 6(1), the first two words in the noun
phrase CPU related columns are mapped to tag hpc:CPU.

2) Generate formatted query: With all possible mappings
found, INPOWS then replaces the Ontology candidates in the
original NL query with the corresponding Ontology tags. In
the NL query parse tree, a phrase is the parent node of the
words inside it. If the parent node and the child nodes mapped
to the same Ontology tag, INPOWS replaces inside the parent
(phrase) node. For example, in Figure 6, INPOWS replaces
the mapped CPU related inside the noun phrase instead of
the noun word CPU only.

If the mapped tag is an Ontology concept, it queries the
columns in the datasets that are related to this concept.
Such concept and sub-concept relations are defined with the
property schema:domainIncludes inside HPC Ontology. Thus,
this property is added in the front of the Ontology concept
tag to find matches for all sub-concepts and concepts. (e.g.
<schema:domainIncludes hpc:CPU> in Figure 6(3)).

If the mapped tag is an Ontology property, the words that
meet both the following two conditions are concatenated to
the tag as the value of this property: (1) words that follow
the Ontology candidate in the query, and (2) words that are
siblings of the Ontology candidate in the parse tree. For
example, in Table I(2), the “GPGPU” is the sibling of the
“subject” in the parse tree. With the “subject” mapped to
hpc:subject tag, the final Ontology tag after concatenation is
<hpc:subject “GPGPU”>.

An NL query can have multiple Ontology candidates that
are mapped to Ontology tags. Some candidates could map
to multiple tags and some are not supposed to map to any
tags. Thus, INPOWS creates all the possible combinations for
the mapped Ontology tags, as each combination includes one
Ontology tag from one candidate. For each combination, it
replaces the Ontology candidates with the Ontology tags in the
NL query, wrapped with a pair of angle brackets “<>”. The
new queries with “<Ontology tags>” are called formatted



SELECT ?var 
 WHERE {  
     ?x_item rdf:type hpc:Hardware.  
     ?x_item hpc:wasUsedBy ?experiment. 
     ?experiment hpc:name "X". 
      ?x_item hpc:name ?var 
 }

SELECT ?var 
 WHERE {  
     ?x_item rdf:type <class>.  
     ?x_item   <property tags 1>. 
     ?x_item   <property tags 2>. 
           ... 
      ?x_item <subject> ?var}

Get the hardware used by the experiment with name "X"
Get hardware <hpc:wasUsedBy <hpc:experiment hpc:name "X">>

1
2

3 4

Figure 7. SPARQL template for property queries

query (e.g. Figure 6(4)).
In the end, there will be a list of formatted queries. The

formatted query that has tags from all the Ontology candidate
tags is the default formatted query. The first generated
query becomes the default formatted query if there are several
formatted queries that meet this condition. INPOWS shows the
list to the user, and let them select the one that can represent
their intents. Please note that the formatted query list always
includes the original NL query without any tags.

With the correct formatted query selected, INPOWS then
splits the query into two parts. The “<Ontology tags>” inside
the formatted query is replaced with the placeholder word
“condition”. The new query has no content related to Ontology,
hence its search space limited to the DSL. We call it a DSL
query. The DSL query is directly passed to the front end
of HISyn, while the placeholder word “condition” is directly
mapped to the Ontology API in the synthesis process.

All the <“Ontology tags”> inside the formatted query are
then passed to the Ontology Module to create the SPARQL
query that acquires the information inside the Ontology.

B. Ontology Module

The Ontology module plays a key role in communication
with Ontology. It takes the Ontology tags from the formatted
NL query and the CGT from HISyn synthesis process as input,
automatically generates the SPARQL query that can acquire
the knowledge from Ontology. After getting the query results,
it replaces the Ontology API inside the CGT, return the final
CGT to the back end of HISyn, and generate the final workflow
expression. This section gives a detailed description of the
Ontology module.

1) Generate SPARQL query: As mentioned in section V-A,
for Ontology queries, INPOWS currently supports property
queries and concept queries. Therefore, two SPARQL tem-
plates are prepared to support these two query types. The
template for property queries are shown in Figure 7(3). The
filled template for concept query is shown in Figure 3(d),
and the highlighted components are the Ontology tags and
information from the CGT.

The types of queries are identified through Ontol-
ogy tags from the formatted NL query. If a tag has
schema:domainIncludes, it searches for the related concept of
dataset columns, hence it is the concept query. Otherwise,
it queries for certain properties, hence it is the property
query. With the query type determined, INPOWS then fills
the template with the <“Ontology tags”> and information
from CGT.

For concept query template, from the top to bottom, there
are three blanks that need to be filled, dataset name, query
subject and Ontology concept tag. The dataset name is from
the CGT by checking the child node of API datasetName,
while the query subject is determined by the parent of the On-
tology API. The Ontology concept tags are from the DSL/On-
tology split step directly. For example, in Figure 3(d), the
dataset name and query subject are filled by the information
from CGT. Specifically, datasetName indicates the dataset
name. The Ontology API is the child of columnName, thus it
indicates the query subject. The Ontology concept tag is from
the formatted DSL query directly.

For property query template, the blanks are class, query
subject and Ontology property tags. The class and the query
subject is filled by the parent node of the Ontology API,
while the properties are filled by the Ontology property tags
from the formatted query. For example, the parent node
of the Ontology API is hardwareName in the CGT of
the query in Figure 7(2). Thus, the class of the template
is hpc:Hardware, and the query subject is hpc:name. Next
INPOWS fills the property tags inside the template. The
Ontology property tag has two embedded tags. Inside the inner
tag, the hpc:experiment is a Ontology class mapped by the
NL query keyword experiment. Since the goal is to search
for instances with certain properties, the Ontology class is
replaced with a SPARQL variable ?experiment. Then the inner
tag (?experiment hpc:name “X”) is a valid triplet. They are
put into the template from left to right. The object of the
outer tag is the subject of the inner tag, i.e. hpc:wasUsedBy
?experiment. Then the inner tag is directly filled into the
template as property tags 2 inside the template. At this step,
the full SPARQL query is completed as shown in Figure 7(4).

2) Replace Ontology API: After generating the SPARQL
query, INPOWS then runs it to acquire the knowledge from
Ontology. The concept query searches for not only the given
concept, but all the sub-concepts of the given concept, and
return the columns that relate to all the concept and sub-
concepts. In Figure 3(d), the column “flops” and “frequency”
are two columns that are related to the sub-concepts of “CPU”.

Then query results are used to replace the Ontology API
node inside the CGT. In Figure 3(5), it replaces the Ontology
API with actual column names “flops” and “frequency”. Then
HISyn generates the corresponding workflow expression from
the CGT. In Table I(2), the dataset name “lassen overhead”
and “performance result dataset” are also the SPARQL query
results.

VI. EXPERIMENTS

We conduct a set of experiments to examine the efficacy
of INPOWS to synthesis workflows from HPC-FAIR. We
use the experiments to answer the following four research
questions: (1) What is the accuracy of the DSL/Ontology
splitting module? (2) What is the overall accuracy of the
workflow synthesis framework?(3) What is the accuracy of
creating the SPARQL query? (4) What are the reasons that
cause errors?



We describe the experiment settings in Section VI-A, report
our experiment results in Sections VI-B, and provide a detailed
error analysis in several representative cases in Section VI-C.

A. Methodology

1) Dataset: We collect 60 NL queries to evaluate the
INPOWS. The queries can be divided into three categories
based on their query type.

Data manipulation queries are queries that only need to
process the data. It does not require interaction with Ontology.
There are 17 data manipulation queries in total.

Ontology-interactive queries are queries that mainly
search for the information inside Ontology. There are 25
Ontology queries.

Combined queries are combinations of the previous
queries. Inside one NL query, it requires both data manip-
ulation and Ontology query. There are 18 combined queries.

Table I shows three example queries from each category
and their corresponding workflow expression.

All the queries are provided by a group of contributors of the
HPC-FAIR [55]. We provided the API documentation to show
the scope of the supported operations. Besides, Table I also
provide one example query for each category as the reference.

We use HPC Ontology from [23] in our experiments.
2) Evaluation Metrics: We use all the test cases in each

category in the experiments. We use the DSL/Ontology split
accuracy to evaluate the DSL/Ontology split module. The
DSL/Ontology split accuracy is the ratio between the number
of the correct formatted query and the number of total test
cases. The formatted query is the query selected by the users.

We use workflow expression synthesis accuracy to evaluate
the performance of INPOWS. The expressions are synthesized
from NL queries. The synthesis accuracy is the ratio between
the number of correctly synthesized DSL code expressions
and the number of total test cases. A synthesized DSL code is
correct if it performs the intent expressed inside the NL query.

3) Methods for comparison: We use the DSL/Ontology
split accuracy before the user interaction as the comparison to
evaluate the split module. This accuracy is the ratio between
the number of the correct default formatted query (V-A) and
the number of total test cases. The formatted queries are the
queries selected by the users.

Since INPOWS is the first workflow synthesizer that allows
NL queries, it is hard to compare it with existing works.
We compare the workflow synthesis accuracy with correctly
formatted queries synthesis accuracy for all test cases. It is
the accuracy of synthesis by providing the correct formatted
query to HISyn and Ontology modules. We use the w/o-
Ontology support synthesis accuracy as the baseline, which is
the synthesis accuracy when removing the Ontology module.

B. Results

(Q1) The experiment is shown in Figure 8. Figure 8(a)
shows the DSL/Ontology Split accuracy . For all test cases,
with the help of users, the split achieves 95% accuracy on
providing correct formatted queries. In comparison, without
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Figure 8. DSL/Ontology split accuracy and synthesis accuracy

interaction, only 65% of default formatted queries are correct.
Within 43 queries that involve Ontology (Ontology interactive
queries and combined queries), the split correctly generates
40 formatted queries with the help of the user interaction,
achieving 93.02% accuracy. In comparison, without interac-
tion, only 32 default formatted queries are correct, achieving
74.42% accuracy. The difference between with and without
user interaction (18.6% for Ontology queries and 35% for all
queries) shows large accuracy improvements brought by the
user interactions, demonstrating the effectiveness of the user
interaction to resolve the NL ambiguity.

The accuracy of “All queries” is lower than “Ontology
queries” without interaction, and is higher with interaction.
It is because there are 17 data manipulation queries that do
not involve Ontology. During mapping, 10 of them have one or
more words mapped to Ontology tags, which lower the overall
accuracy. With interaction, users select the un-tagged queries
inside the query list, which results in a higher accuracy.

(Q2) Figure 8(b) shows the overall synthesis accuracy. If
the Ontology module is not involved, every query that needs
knowledge from Ontology is become incorrect. Thus it only
achieves 21.67% accuracy. With the Ontology module gets
involved, the overall synthesis accuracy becomes 80.33%.
For three query categories, The data manipulation queries,
Ontology interactive queries and the combined queries achieve
76.47%, 80% and 83.33% accuracy respectively. The failed
cases are caused by wrong Ontology tags and wrong depen-
dency structures.

We provide the correct formatted query to INPOWS as
the comparison for synthesis accuracy. With Ontology tags
correctly mapped, the overall synthesis accuracy increases 5%.
For two Ontology related queries, the accuracy increases 8%
and 5.56% respectively. It shows that with the query split
errors fixed, INPOWS can achieve higher accuracy.

(Q3) As for the Ontology module, we are using the tem-
plates to create the SPARQL query. In our experiment, for all
the ontology related queries, as the Ontology tags are correctly
split and the CGT is correctly generated, the SPARQL query
is also successfully created and can provide correct knowledge
from Ontology.

C. Error analysis

(Q4) In this section, we conduct the case study to analyze
the reason for failed cases. We first analyzed 1 reason where
the DSL/Ontology split module failed to give correct Ontology



tags. Then we analyze another 2 reasons that cause errors in
the synthesis process.

1) DSL/Ontology split errors: There are 1 reasons that lead
to incorrect formatted query.
Reason-1: Wrong POS annotations
Query-1: Extract data linked to cpu (POS: JJ) from file “X”.

In the DSL/Ontology split module, we map the nouns, noun
phrases and verbs to the Ontology tags. Thus, if a wrong POS
annotation is given by NLP parser, the words and phrases may
not be mapped to the Ontology tags. Query-1 is an example of
wrong POS tags. The NLP parser annotates the word “cpu”
with POS “JJ” (i.e. adjective). Then the word “cpu” is not
mapped due to the error POS annotation. One way to solve this
error is to provide the English sentence with precise grammar.
For example, adding “the” in front of the word “cpu” directly
addresses the issue.

2) Workflow synthesis error: There are 2 reasons that lead
to incorrect synthesis results.
Reason-2: Unmatched information between query and work-
flow expression
Query-2: Get the multiplication results of columns X and Y
from dataset Z.

The correct workflow expression for this query should
be DotProduct(GetColumn(..(X),dataset(Z)),
GetColumn(..(Y)),dataset(Z))). In this expres-
sion, the dataset(Z) becomes the argument of both
GetColumn. However, during the synthesis process, one key
information could be mapped to an API once. Therefore, only
one dataset(Z) exists in the synthesis result, which is
incorrect. One way to address this issue is to provide the
information for each columns, e.g. “Get the multiplication
results of columns X from dataset Z and column Y from
dataset Z”. The other way is to improve HISyn to support
this semantic, which is beyond the scope of this paper.
Reason-3: Wrong dependency graph.
Query-3: Select X1 and X2 from dataset A and Y1 and Y2
from dataset B, then merge them into dataset C.

The dependency graph is the graph representation of key
information of the original NL query. If the dependency
graph is incorrect, it will be hard for HISyn to synthesize
the correct results. Query-3 includes three tasks inside the
one workflow query, two tasks that extract columns from
different datasets, then one task that merges the extracted
data. However, in the dependency graph of this query, the
word “select” becomes the parent node of the word “merge”.
Hence in the synthesized CGT, the API GetColumns (for
“select”) becomes the parent node of the API MergeData
(for “merge”), which result in the reverse execution of the
original intent. To address this issue, we could split this query
into separate sub-queries. The first two queries generate data
extraction workflow individually, and the results of them are
merged by the workflow from the third query.

VII. RELATED WORKS

There have been attempts made in various domains such
as Bio-infographics, Spectrometry, Computational biology and

Pharmacogenomic to automatically generate inter-operable
workflows [28], [31], [42], [56], [60]. Common workflow
language (CWL) [2] is one such example, which makes
data analysis workflows portable for all by standardizing the
computational reuse. CWL community has developed tools,
software libraries, specifications, and has shared CWL de-
scriptions for popular tools [14], [35], [52], [54].However,
the use of CWL usually requires that users know the syntax
of the language as well as fully understand the standardized
vocabulary to automate workflows. In comparison, the NL
input of INPOWS provides more flexibility to users.

Ontology have been used in this area for the development
of various projects like loose programming [17], workflow
generation [48], [49], [59] and meta analysis of data-mining
tasks [15], [16], [39]. They provide common vocabulary to
store the domain knowledge. INPOWS too makes use of
the HPC-ontology to retrieve essential information about the
HPC domain. Several researches have proposed translation of
NL into SPARQL [8], [37], [53], [63]. AutoSPARQL [22],
which uses supervised machine learning to generate SPARQL
queries, presents one such example. However, the SPARQL
query is not sufficient for tasks in HPC-FAIR. Besides query-
ing knowledge from Ontology, INPOWS takes advantage of
the APIs in workflow DSL which could directly access the
data files and model script.

Another body of work is Natural Language (NL) based
program synthesis. [32]–[34] synthesis target code expression
using the NLU-driven approach. Many recent studies have
pursued modern machine learning for NL programming [3],
[6], [9]–[13], [18], [24]–[26], [40], [43], [44], [47], [51],
[62]. However, applying these approaches to program analysis
would require many training examples to cover the vast space
of possible code complexities and situations. They are difficult
to apply to areas where labeled training data is scarce, while
HPC-FAIR is such an example.

VIII. CONCLUSION

This paper proposed INPOWS, the first workflow synthe-
sizer that is Ontology-based and allows NL queries. INPOWS
seamlessly integrates Ontology with NLU-driven workflow
synthesis, empowers flexible NL input for users and superior
extensibility to adopt domains with continuous changes. The
interactive design further resolve the NL ambiguities. The pa-
per applied INPOWS to HPC-FAIR, a FAIR practice for HPC’s
ML models and datasets. It demonstrates the effectiveness
of the INPOWS through a set of experiments, showing 80%
synthesis accuracy for 60 NL queries. The interactive design
achieves 95% accuracy for extracting Ontology information
inside the NL query, demonstrating the robustness of the
INPOWS .
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Maya Nedeljkovich, et al. Common workflow language, v1. 0. figshare,
2016.

[3] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion
Stoica. Autopandas: neural-backed generators for program synthesis.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
27, 2019.

[4] Liming Chen, Nigel R Shadbolt, Carole Goble, Feng Tao, Simon J
Cox, Colin Puleston, and Paul R Smart. Towards a knowledge-based
approach to semantic service composition. In International Semantic
Web Conference, pages 319–334. Springer, 2003.

[5] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-
modal synthesis of regular expressions. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 487–502, 2020.

[6] Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer
specification synthesis. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 602–612, 2019.

[7] Keith Cooper and Linda Torczon. Engineering a compiler. Elsevier,
2011.
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