
Towards Seamless Management of AI Models in High-Performance Computing
Sixing Yu1, Murali Emani2, Chunhua Liao3, Pei-Hung Lin3, Tristan Vanderbruggen3, Xipeng

Shen4, Ali Jannesari1

1Iowa State University, Ames, IA
2 Argonne National Laboratory, Lemont, IL

3 Lawrence Livermore National Laboratory, Livermore, CA
4 North Carolina State University, Raleigh, NC

yusx@iastate.edu, memani@anl.gov, {liao6, lin32,vanderbrugge1}@llnl.gov, xshen5@ncsu.edu, jannesar@iastate.edu

Abstract
With the increasing prevalence of artificial intelligence (AI)
in diverse science/engineering communities, AI models
emerge on an unprecedented scale among various domains.
dHowever, given the complexity and diversity of the software
and hardware environments, reusing AI artifacts (models and
datasets) is extremely challenging, especially with AI-driven
science applications. Building an ecosystem to run and reuse
AI applications/datasets at scale efficiently becomes increas-
ingly essential for diverse science and engineering and high-
performance computing (HPC) communities. In this paper,
we innovate over an HPC-AI ecosystem – HPCFair, which
enables the Findable, Accessible, Interoperable, and Repro-
ducible (FAIR) principles. HPCFair enables the collection of
AI models/datasets allowing users to download/upload AI ar-
tifacts with authentications. Most importantly, our proposed
framework provides user-friendly API for users to easily run
inference jobs and customize AI artifacts to their tasks as
needed. Our results show that, with HPCFair API, users ir-
respective of technical expertise in AI, can easily leverage AI
artifacts to their tasks with minimal effort.

Introduction
With the outstanding performance achieved by artificial in-
telligence (AI) and machine learning (ML), AI artifacts (AI
models and datasets) are being increasingly adopted in di-
verse science and engineering domains, such as materials
discovery, ecology, cosmology, biology, and wildlife con-
servation. However, given the complexity and diversity of
the software and hardware environments, reusing AI arti-
facts is extremely challenging, especially with AI-driven sci-
ence and engineering applications. Additionally, AI artifacts
developed in various scientific domains make it extremely
challenging for scientists to fetch, reuse, and reproduce. In-
troducing frameworks to reasonably access, reproduce and
run those AI applications at scale for diverse science and
engineering communities, becomes crucial to accelerate sci-
ence with high-performance computing (HPC).

We first list the key challenges for diverse scientific com-
munities to apply AI artifacts, which need to be addressed
by such an AI artifact management framework. First, AI ar-
tifacts rely on complex software and hardware dependen-
cies. Second, the dependencies vary across AI artifacts. For

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

any given AI artifact, we need to configure running environ-
ments for it. Third, AI artifacts supported by different back-
end implementations (e.g., C++ and Python) usually have
interoperability challenges. Fourth, applying AI artifacts re-
quires diverse domain scientists’ significant programming
skills beyond science. Fifth, it is hard to find, access, inter-
operate, and reproduce a target AI model available in public
repositories. Sixth, it is hard for scientists to find a target
model that matches their needs perfectly, while customizing
AI artifacts need significant efforts, e.g, hundreds of hyper-
parameters for tuning Lastly, there is a lack of benchmark
and standardization processes due to which the experimen-
tal results are hard to reproduce on the user’s customized
tasks.

Although the existing HPC-AI artifact management
ecosystem (Wolf et al. 2019; Chard et al. 2019) significantly
simplifies the threshold for applying AI artifacts, neverthe-
less, they are dedicated to serving computer science and soft-
ware engineering domain scientists only. Such challenges
have barely been addressed by existing HPC-AI ecosystems.

In this paper, we propose novel techniques to HPCFair
(Verma et al. 2021; Nan et al. 2021) – an HPC-AI model and
data management system, which enables AI artifacts Find-
able, Accessible, Interoperable, and Reproducible (FAIR
principles) as well as provides user-friendly interfaces/APIs
for diverse domain scientists adopting AI artifacts to their
in-demand research tasks. Specifically, HPCFair container-
ized AI artifacts, where all the executing dependencies for
given artifacts are built in an associate virtual machine inde-
pendently. Therefore, the proposed work provides users with
a friendly executing environment and bypasses the labor-
costly environment established on both hardware and soft-
ware. Besides that, we designed an HPC ontology to effi-
ciently implement FAIR principles, which enables scientists
to easily share and fetch target AI artifacts.

We summarize our contributions as follows:

• We proposed a novel AI model knowledge management
system for high-performance computing.

• Our proposed solution significantly simplified AI model
deployment for domain scientists.

• It provides user-friendly APIs for scientists to customize
AI products to their demands.

Scripts to
access
public

dataset

Front-End

AI/ML
Docker
Images

Individual
Utilities/

Supporting
Libraries

Cached
Models' Imgs

Tags
Based
Search

Load
Models

(MLCubes)

Load
Dataset

Store
Models/
Dataset/

Supporting
Library

YAML
based

config files

IF MODEL
OR LIB:
Create a
container

img
ELSE:

store as
object

Data
preprocessign

scripts
versioned

Already
exists?

Notify User of
conflicts

Yes

No

Cached Datset
scripts

Private
Dataset

Database

User
Authenti-

cation

Public
or Pvt?

Pvt

Data
preprocessign

scripts
versioned

Public

Public
or Pvt?

Pvt

Public

HPC Ontology

Workflow Synthesizer

Model
Inference

AI objects
converter

AI Objects
(Models/Dataset)

Knowledge
Transfer/

Model
Optimize

ONNX

Programming-free
configuration
processing

components

YAML
based

query files

Figure 1: Designed Workflow for HPCFair.

Background
Since AI artifacts popped up on a giant scale, extensive ef-
forts have been devoted to developing efficient AI artifact
management tools. In this section, we summarized the State-
of-The-Art (SoTA) AI artifacts tools.

Container Platform
A recent popular trend to improve the reproducibility of
AI artifacts is containerization, which enables developers
to pack the source code as well as running dependencies
and provides an operation system-independent virtual envi-
ronment for executing target AI artifacts. SoTA container-
ized platform such as Docker (Merkel 2014) and Singu-
larity (Kurtzer, Sochat, and Bauer 2017) enables develop-
ers to integrate their codes and dependencies into contain-
ers—standardized executable components, and hence, ex-
ecutable in any operating system. Nowadays, great efforts
are devoted to specializing in containerized machine learn-
ing (ML) models and datasets, such as MLCube (Kahng,
Fang, and Chau 2016). However, existing containerized plat-
forms are targets to developers publish their works and re-
quire expert knowledge for configuration. It is challenging
for domain scientists to use in their scientific applications.

AI artifacts Hub
AI artifacts Hubs gather collections of AI models and
datasets and provide a user-friendly interface to search and
reproduce AI artifacts. For instance, Data and Learning Hub
for Science (DLHub) (Chard et al. 2019), a cloud-hosted
learning system, enables developers to publish their models
with flexible access control. Collective Knowledge Frame-
work (cKnowledge) (Fursin 2021) constructed a database of

AI components as well as provides APIs and terminal in-
terfaces to efficiently manage research projects for devel-
opers. Hugging Face (Wolf et al. 2019) offers NLP models
and datasets, such as Transformer models, as multi-platform
supportive open-source libraries that help users download,
infer, optimize, and reuse AI models. Tensorflow Hub 1

and PyTorch Hub 2 enable developers to upload their cus-
tomized model architecture and pre-trained weights in the
cloud database and provide APIs to share public models.
However, the AI components shared in PyTorch and Tensor-
flow Hub have limited their backend which hinders switch-
ing the programming frameworks as needed.

Approach
In this section, we will present how HPCFair lowered the
threshold for diverse scientific communities to adopt AI to
their research. In essence, HPCFair introduced four com-
ponents to provide scientists with a user-friendly inter-
face. First, we proposed object converter components to
enable programming framework-agnostic implementation.
Then, we introduced AI artifact containerized components,
which allow AI artifacts to run independently of the op-
erating system. To allow scientists to run AI artifacts ef-
fortlessly even without a programming background, we de-
signed a straightforward user query rule and established ro-
bust user query processing components. Additionally, to en-
able AI artifacts Findable, Accessible, Interoperable, and
Reproducible (FAIR) principles, we leveraged an HPC on-
tology (Liao et al. 2021) to run our proposed platform in

1Available at https://www.tensorflow.org/hub
2Available at https://pytorch.org/hub/

HPC clusters.

Enable AI artifacts Collaboration
AI artifacts have been developed by different underlying
systems, such as different programming languages (Python,
C++) and frameworks (Scikt-learn, PyTorch, TensorFlow),
and AI artifacts in different frameworks are not transferable.
Hence, it raises significant challenges for users inter-operate
AI artifacts with distinct underlying backends. For instance,
an AI model implemented in C++ is hard to integrate with
an AI dataset in Python implementation. Domain scientists
tend to be challenged to incorporate AI artifacts in their ap-
plications, where they have to switch back and forth between
different developing backends.

Thanks for recent efforts in ONNX (Bai et al. 2019) (a
community AI project for building general AI model for-
mats), which uses extensible computation graph models to
represent AI models built with different frameworks. Intu-
itively, with its framework and platform-independent com-
putational graph representation, AI models developed with
different frameworks can be transferred to a general format,
and hence, support interoperability between frameworks.
However, such a great contribution has barely been used
by existing HPC-AI tools. Therefore as shown in Figure 1
AI artifacts converter, HPCFair developed an online running
process that any customized AI model that has been shared,
uploaded, and pushed to the HPCFair database would be au-
tomatically transferred to ONNX.

Containerized AI artifacts
Since our target users are among different scientific domains
and have various hardware environments, we aim to provide
solutions for deploying AI artifacts among different plat-
forms. The benefit of an AI model container image can be
briefly summarized as follow: first, once the container image
is built, it will provide a virtual executing environment for
the associate AI model that is independent of local devices.
Second, the container image can generalize the model to dif-
ferent software/hardware systems, and save great efforts in
environment configurations. Lastly, the container image can
be executed easily.

Hence, to improve and reproduce experiments with AI ar-
tifacts we aim to collect experiments run-time system and
supporting metadata configuration information. Specifically,
we leverage MLCube (Kahng, Fang, and Chau 2016) con-
tainer storing essential runtime experimental configurations
and states of AI models. A containerized object is rep-
resented by a configuration file, which contains informa-
tion on the object’s runtime supporting libraries and hyper-
parameters. Besides that, uniqueness checks are been per-
formed to guarantee there is no duplicate uploading in the
underlying database.

User-Friendly Query Rule Design
As shown in Figure 1, to provide a friendly interactive in-
terface for users, every query made by users would initial-
ize the proposed components. Users may provide configu-
ration files to specify tasks and parameters as needed for

their tasks. In HPCFair, we designed four groups of con-
figuration arguments to conduct main tasks (store model-
s/datasets, tag-based search, model inference, knowledge
transfer/model optimization, load models, and load dataset)
provided by HPCFair APIs. Listing 1 shows the example
configuration for model conversion. The first configuration
arguments group is general arguments, where a user speci-
fies which task to perform, and HPCFair will initialize the
corresponding components (as shown in Listing 1 lines 1-
3). Then, the user provides the device arguments (Listing 1
lines 5-9), and the user specifies local device information.
The next group of configuration arguments is the task argu-
ments (Listing 1 lines 12-16), such as input, working path,
etc. Lastly, the output arguments specify where HPCFair ex-
ports the output (Listing 1 lines 18-19).

1 general_args:
2 task: "conversion"
3 backend: ["pt","tf"]
4
5 device_args:
6 worker_num: 4
7 device: "cpu"
8 gpu_mapping_file: ’’
9 gpu_mapping_key: ’’

10
11 model_args:
12 model_name: ["encoder","decoder"]
13 model_file: ["./ckpt/encoder.ckpt",

"./ckpt/decoder.ckpt"]
14 onnx_version: 10
15
16 out_args:
17 export_file: ["encoder.onnx","decoder.

onnx"]

Listing 1: Configuration for model conversion

Designed Workflow for FAIR Principles
Our ultimate goal is to provide scientists with a friendly
platform to fetch, share, and apply AI artifacts. As shown
in Figure 1, we designed an efficient online workflow for
HPCFair (Liao et al. 2021). First, to assist scientists in effi-
ciently finding target AI artifacts (Findable), HPCFair regis-
tered and indexed descriptive metadata with corresponding
AI artifacts together as a searchable resource. The metadata
contains rich descriptive information about associated AI ar-
tifacts and is assigned a globally unique and persistent iden-
tifier, which significantly enhances searchability. Second,
users can easily access AI artifacts in the HPCFair database
through the designed communication protocol (Accessible).
Such communication protocol enables users to share or dis-
cover their target AI artifacts efficiently. Additionally, HPC-
Fair also provides authorized credentials for users securely
access AI artifacts wherever necessary. To qualify AI arti-
facts to interoperate among various AI frameworks (Inter-
operable) at the application level, the object conversion pro-
cess on the HPCFair server continuously transforms com-
municated AI models to ONNX format, equipping applica-
tion users to transform models from one format to another
as needed. Lastly, the scientific community oftentimes inter-
acts among researchers to share and reuse crucial compo-

nents. HPCFair provides metadata with detailed provenance
to reuse the components to build an AI pipeline by plugging
the data artifacts (Reusable). The loosely coupled nature of
the stored data enables efficient development.

Evaluation
In this section, we conduct comprehensive evaluations for
HPCFair under different practical scenarios and use demos
and examples to show the ease of scientists applying AI ar-
tifacts by using HPCFair.

AI artifacts collaborations

As AI artifacts are often implemented by diverse frame-
works, enabling collaboration among AI artifacts becomes
challenging. HPCFair introduces object converter compo-
nents and provides APIs for a user to allow AI artifacts col-
laborations. To assess the HPCFair with a general use case,
we experiment with interfacing two AI models implemented
with PyTorch and TensorFlow respectively. We consider a
popular encoder-decoder model structure, given an encoder
implemented on PyTorch and a decoder developed by Ten-
sorFlow, our goal is to construct an AI model from the given
encoder and decoder.

To achieve model collaboration, we first leverage HPC-
Fair APIs to convert target AI artifacts to ONNX formats,
then use HPCFair built-in inference API to run the model. To
leverage functional APIs built-in HPCFair, the user provides
a straightforward configuration file. In the model collabora-
tion task, we first configure the model conversion task con-
figuration file, as shown in Listing 2. As shown in the con-
figuration file, the user specifies the essential AI artifacts in-
formation, such as the backend framework, and checkpoint
directory. The output file would be saved into the path user
defined under out args.

After the target model has been converted to a uniformed
ONNX file, the next step is to run the model. Similarly,
HPCFair provides high-level APIs for users to run AI ar-
tifacts without programming expertise or knowledge. List-
ing 2 shows the inference configuration file.

1 general_args:
2 task: "inference"
3 tag: "collaboration"
4 backend: "onnx"
5
6 device_args:
7 worker_num: 4
8 device: "cpu"
9 gpu_mapping_file: ’’

10 gpu_mapping_key: ’’
11
12 task_args:
13 model_name: ["encoder","decoder"]
14 model_file: ["encoder.onnx", "decoder.

onnx"]
15 onnx_version: 10
16 input: "input.txt"
17
18 out_args:

19 export_file: "out.txt"

Listing 2: Configuration for model collaboration for
inference

The most exciting part of HPCFair is that it is fairly
simple to call the APIs, which usually with one-line codes
to finish a task. Listing 3 shows we call HPCFair-provided
Python APIs to finish model collaboration tasks based on
the configuration files. Model collaboration is a combined
task with model conversion and model inference tasks. In
the first line, we import the HPCFair python APIs. then
in the main function (lines 3-6), we first create an API
object (line 4). Then perform model conversion (line 5).
Lastly, model collaboration (line 6). Taking advantage of
the robust high-level APIs, we finish the complex model
collaboration task in 3 lines of code.

1 from hpcfair import modelAPI
2
3 if __name__ == ’__main__’:
4 api = modelAPI()
5 api.conversion(path_to_config)
6 api.collaborate(path_to_config)
7 api.container(path_to_config)

Listing 3: Call HPCFair APIs

Inference AI artifacts via HPCFair
In the AI artifacts inference task, users provide input, and
HPCFair runs the target AI artifacts on that input and re-
turns the output. As mentioned before, to support multi-
framework and underlying language, HPCFair automatically
transfers AI artifacts to ONNX, hence, greatly simplifying
the inference process. Inside HPCFair, we build a base con-
tainer for running ONNX models. The inference examples
as shown in Listing 2 and Listing 3.

Run AI project via HPCFair
Different from inference AI artifacts, which deal with given
inputs, an AI project may involve data processing, train-
ing, fine-tuning, and transferring on scaled datasets. HPC-
Fair built a running virtual environment for AI projects by
containerization. To run the target AI model fetched from
HPCFair, users simply provide a configuration file (as shown
in Listing 4). HPCFair provides high-level APIs for users to
build AI artifacts to their task in one line codes (Line 7 in
Listing 3).

1 general_args:
2 task: "container"
3 backend: "mlcube"
4
5 device_args:
6 device: ’gpu’
7
8 task_args:
9 work_dir: "project_dir"

10 build_file: "path_to_build_file"
11 build_tag: "image_name"
12 volume: "/app"
13 out_args:
14 export_file: "out.txt"

Listing 4: Configuration for running AI project

Conclusion
In conclusion, we proposed a novel model knowledge man-
agement system - HPCFair, which enables AI artifacts Find-
able, Accessible, Interoperable, and Reproducible (FAIR)
principles. HPCFair provides users with high-level APIs and
a friendly interactive interface to fetch, reproduce and re-
trieve AI artifacts. Most importantly, HPCFair greatly saves
the labor cost for scientists to customize AI artifacts to their
tasks.

Acknowledgment
This research was funded in part by and used resources at the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract
DE-AC02-06CH11357. This work is also supported by the
U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Program under Award Number DE-
SC0021293. Prepared by LLNL under Contract DE-AC52-
07NA27344 (LLNL-CONF-842207).

References
Bai, J.; Lu, F.; Zhang, K.; et al. 2019. ONNX: Open Neural
Network Exchange. https://github.com/onnx/onnx.
Chard, R.; Li, Z.; Chard, K.; Ward, L.; Babuji, Y.; Woodard,
A.; Tuecke, S.; Blaiszik, B.; Franklin, M. J.; and Foster, I.
2019. DLHub: Model and data serving for science. In
2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 283–292. IEEE.
Fursin, G. 2021. Collective knowledge: organizing research
projects as a database of reusable components and portable
workflows with common interfaces. Philosophical Transac-
tions of the Royal Society A, 379(2197): 20200211.
Kahng, M.; Fang, D.; and Chau, D. H. P. 2016. Visual Explo-
ration of Machine Learning Results Using Data Cube Analy-
sis. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics, HILDA ’16. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450342070.
Kurtzer, G. M.; Sochat, V.; and Bauer, M. W. 2017. Singu-
larity: Scientific containers for mobility of compute. PLOS
ONE, 12(5): e0177459.
Liao, C.; Lin, P.-H.; Verma, G.; Vanderbruggen, T.; Emani,
M.; Nan, Z.; and Shen, X. 2021. HPC Ontology: To-
wards a Unified Ontology for Managing Training Datasets
and AI Models for High-Performance Computing. In 2021
IEEE/ACM Workshop on Machine Learning in High Perfor-
mance Computing Environments (MLHPC), 69–80. IEEE.
Merkel, D. 2014. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239): 2.
Nan, Z.; Guan, H.; Shen, X.; and Liao, C. 2021. Deep nlp-
based co-evolvement for synthesizing code analysis from
natural language. In Proceedings of the 30th ACM SIG-
PLAN International Conference on Compiler Construction,
141–152.
Verma, G.; Emani, M.; Liao, C.; Lin, P.-H.; Vanderbruggen,
T.; Shen, X.; and Chapman, B. 2021. HPCFAIR: Enabling

FAIR AI for HPC Applications. In 2021 IEEE/ACM Work-
shop on Machine Learning in High Performance Computing
Environments (MLHPC), 58–68. IEEE.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.

