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Abstract—DataRaceBench (DRB) is a dedicated benchmark
suite to evaluate tools aimed to find data race bugs in OpenMP
programs. Using microbenchmarks with or without data races,
DRB is able to generate standard quality metrics and provide
systematic and quantitative assessments of data race detection
tools. However, as the number of microbenchmarks grows, it
is challenging to manually identify similar code patterns for
DRB, within the context of identifying duplicated kernels or
guiding the additions of new kernels. In this paper, we experiment
with a transformer-based, deep learning approach to similarity
analysis. A state-of-the-art transformer model, CodeBERT, has
been adapted to find similar OpenMP code regions. We explore
the challenges and the solutions when applying transformer-based
similarity analysis to new source codes which are unseen by pre-
trained transformers. Using comparative experiments of different
variants of similarity analysis, we comment on the strengths
and limitations of the transformer-based approach and point out
future research directions.

Index Terms—Benchmarks, OpenMP, Data Races, Tools, Deep
Learning, Transformers

I. INTRODUCTION

DataRaceBench (DRB) is a dedicated benchmark suite to
evaluate tools aimed at finding data race bugs in OpenMP
programs. Since its initial release in 2017 [1], DRB has incor-
porated various additions to have a richer set of microbench-
mark programs to cover the latest OpenMP constructs, base
programming languages (such as C/C++ and Fortran) and
modern parallel hardware devices (e.g. GPUs) [2]-[4]. Using
microbenchmarks with or without data races, DRB is able to
generate standard quality metrics (such as accuracy and F-
1 score) and provide systematic and quantitative assessments
of data race detection tools. The existing workflow using
DRB has several steps: compiling the microbenchmark source
codes, running tools being evaluated, collecting the reports
generated by the tools, and processing the report files against
ground truth to calculate the quality metrics of a tool. Due
to its good design and automated workflow, DRB has been
widely adopted by tool developers [5]-[11].

As the number of microbenchmarks grows, it is increasingly
challenging to manually maintain the benchmarks in DRB.
In order to have a minimum collection of microbenchmark
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programs with maximum coverage of OpenMP code patterns
with or without data races, similarity analysis has been at-
tempted to help identify similar code patterns inside the set
of microbenchmarks. The analysis can also help with another
typical maintenance task: given a new code pattern suggested
by users, we have to decide if it should be added into DRB
or not. However, the similarity analysis methods in prior
work [3], [4] are primitive. They rely on manually selected
static and dynamic properties of OpenMP code regions. They
also involve specialized compilers and tools to extract the
selected properties. As we try to add more microbenchmarks
into DRB, it becomes increasingly important to have enhanced,
automated similarity analysis techniques to avoid duplicated
microbenchmarks being collected in DRB.
In the meantime, a new type of deep learning model
called transformer has become a mainstream choice for natural
language problems since its introduction in the aptly named
“Attention is All You Need” paper in 2017 [12]. Seeing
the rise of transformer-based models such as BERT [13],
DALL-E and GPT-3 [14], some researchers have predicted
that transformer models may become a critical foundation for
a wide range of scientific and technical domains [15]. Due
to the similarity between natural languages and programming
languages, transformers also have been extended to solve
various programming language processing (PLP) tasks [16],
including clone detection, code completion (e.g. OpenAl’s
CodeX [17]) and program synthesis (e.g. AlphaCode [18]).
A recent paper [19] summarizes typical PLP tasks, model
architectures, compiler tools and datasets in order to facilitate
the assembling of machine learning pipelines to solve a given
programming language processing task. However, it is unclear
how transformers can be leveraged in the context of parallel
programming languages such as OpenMP.
In this paper, we report our early experience with trans-
formers when adapting a state-of-art transformer for similarity
analysis of OpenMP code regions, within the context of
maintaining DRB. This paper has the following contributions:
1) a machine learning pipeline designed for adapting pre-
trained transformer models for similarity analysis of
OpenMP code regions,

2) a summary of challenges of the transformer-based ap-
proach and a set of solutions, including two fine-tuning
steps using new datasets.



3) acomparison of different ways of leveraging a pre-trained
transformer model, and

4) a discussion about the strengths and limitations of
transformer-based similarity analysis for parallel pro-
gramming codes.

The remainder of this paper is organized as follows. In
the next section, we give an overview of DRB. Section III
presents the background of similarity analysis and relevant
prior implementations used by DRB. A new similarity analysis
using transformers is described in Section IV. Experiments are
discussed in Section V. Finally, related work is mentioned in
Section VI and conclusions are drawn in Section VIIL.

II. DATARACEBENCH

DataRaceBench is an open-source benchmark suite de-
signed to systematically and quantitatively evaluate the ef-
fectiveness of data race detection tools. The design of DRB
focuses on parallel programs written in OpenMP, the popular
parallel programming model for multi-threaded applications.
To enable support for data race tool evaluation, DRB includes
a set of microbenchmark programs with or without data
races. The microbenchmarks come from three main sources:
manually written, extracted from real scientific applications,
or automatically generated optimization variants.

As shown in Fig. 1, DRB has grown gradually through
joint developments from the DRB development team and com-
munity contributions since its release in 2017 [1]-[4]. Early
versions (1.1 and 1.2) only support C/C++. Later versions
(since 1.3) contain Fortran support. In the latest version 1.4.0,
DRB collects 181 C/C++ microbenchmarks and 172 Fortran
microbenchmarks. The latest suite includes parallel programs
supporting OpenMP 3.x to OpenMP 5.x, both CPU and GPU
hardware devices, both static and dynamic tools, as well as
dockerized workflows and fine-grain correctness checking.

DRB is expected to continue to grow and collect more mi-
crobenchmarks representing OpenMP data race code patterns
extracted from different domains. Ideally, DRB should contain
a minimum collection to reduce the overhead of evaluating
different tools, if possible. At the same time, it must represent
the maximum coverage in terms of code patterns and the
OpenMP language specifications. Version 1.3 and 1.4 of DRB
leveraged two primitive similarity analysis methods to help
identify duplicated code patterns and guide the addition of
new microbenchmarks. We will explain the background of
similarity analysis and details of the prior attempts in the
following sections.

III. SIMILARITY ANALYSIS
A. Similarity analysis applications

Code similarity analysis aims to determine if two given
code fragments share similar syntactic or semantic represen-
tations. Code semantic similarity analysis is a more popular
type of code similarity analysis that can be applied to tasks
such as code recommendation, bug detection, and language-
to-language translation. Another variation of code similarity
analysis addresses the code clone detection to determine

if one code fragment is cloned from another source code
fragment. This type of analysis can be helpful to identify code
plagiarism, identify reusable code for library development, and
detect fault/error propagation caused by code cloning.

To demonstrate the similarities among existing OpenMP
programs in DRB, Fig. 2 shows three code fragments from
different microbenchmarks in DRB. Parallel code regions
extracted from DRB0OO1 and DRBO029 share the same OpenMP
syntax to represent parallel for loops. Although there exist
minor differences in the array subscripts and they have differ-
ent types of loop-carried dependency causing the data race, we
could still consider these two code fragments largely similar.
But they differ in some critical aspects (e.g. dependence types)
DRB cares about. DRB0O09 has several differences compared
to the other two code fragments: (1) it has an additional
OpenMP clause to represent its data-sharing attribute, (2) it
has a different upper loop bound, and (3) it has a different
statement in the loop body. With these differences, we would
consider DRBO09 to have much less similarity compared to
the other two code fragments presented here.

It is interesting that a benchmark suite like DRB should
contain both similar and different code regions, but not
duplicated regions in the view of code patterns relevant to
data races. A good similarity analysis should highlight the
features important to a goal and help the maintainers to make
a decision.

B. Definition of similarity analysis

In the nutshell, similarity analysis for source codes deter-
mines if the given source programs are considered similar.
However, the definition of similarity has to be clearly spec-
ified to avoid confusion and misuse within a given context.
Depending on the usage of similarity analysis, the similarity
can be applied to syntax-based and semantic-based code
representations, equivalence of program functions, source code
patterns, or the mix of the above. For example, the definition
of similarity in source code clone detection would focus
on syntactic similarity of the source codes but allow minor
variations, such as differences in variable names and the order
of operands used in statements. On the other hand, similarity
analysis applied for program understanding and functional-
ity equivalence could determine syntactically dissimilar code
blocks to be semantically similar.

Four similarity types are defined to distinguish code clone
types to support the evaluation of clone detection tools [20].
The following summarizes the definitions of these types:

o Type-1: Source code fragments are identical except for
differences in white spaces, layout and comments.

o Type-2: In addition to Type-1, source code fragments are
identical except differences in identifier names and literal
values.

o Type-3: In addition to Type-1 and Type-2, source code
fragments are syntactically similar but with differences at the
statement level. Code fragments can have statements added,
modified and/or removed.



V. 1.1 (2017)

Positive and negative tests

V. 1.2 (2018)
OpenMP 4.5 directives
Data-sharing attribute
More C++ support

Ground-truth as comments
Mostly C programs

V. 1.3 (2020)
Fortran support
Dockerized tools
Customized subsets
Similarity analysis v1

V. 1.4 (2021)
Loop/region-level checking
Static tools

Enriched ground-truth
Similarity analysis v2

Fig. 1: History of DataRaceBench

| #pragma omp parallel for
> for (i=0;i< len -1 ;i++)
3 alil=ali+1]+1;
(a) DRBOO1-antidep1-orig-yes.c
| #pragma omp parallel for
> for (i=0;i<len-1;i++)
5 ali+ll=al[il+l;
(b) DRB029-truedep1-orig-yes.c

| #pragma omp parallel for private (i)
2 for (i=0;i<len;i++)
x=1i;

(c) DRBO009-lastprivatemissing-orig-yes.c
Fig. 2: Examples of DRB code regions

o Type-4: Code fragments are syntactically dissimilar but with
the same functionality.

We leverage the definitions of similarity types to further
define a new type of similarity used for the study of similarity
analysis for DRB. The Type-5 similarity will be based on
the Type-3 similarity but the code regions should share the
same computational traits in the source codes. In this paper,
we define the computational traits as the properties of an
OpenMP code region, including its OpenMP directive and the
code block following the OpenMP directive. Two similar code
regions should carry similar OpenMP directives and clauses
and have similar syntactic code representations, in a loop or in
a statement, following the given OpenMP pragma. Ultimately,
we would like the computational traits to include more detailed
information such as data dependency information. Therefore
different code regions should have either no loop-carried
dependency or the same type of loop-carried dependency (true,
anti, or control dependency).

C. Previous Method: Cosine Similarity Analysis

A Cosine Similarity analysis has been applied to DRB [3]
[4]. The analysis relies on a set of manually picked features to
represent the source code regions. The collected information
has: first, the static information includes OpenMP directives
and clauses used in source code (Table I: EO through E122);
second, statistics of the code region wrapped by OpenMP
directives. (Table I: E123 through E134); and lastly, the
dynamic information contains the data race analysis result
(Table I: E135 through E140). A Clang-based plugin tool, the
OpenMP Extractor [3], was applied to collect these features
from Clang AST. The feature vector is defined using the

following formula:

A = (Directive, Clause, { Extracted source info. list},
{Tool result list}, Ground Truth)

Feature Value Encoding | Description
Range Fields
Directive [0,1] [EO- 87 directives are flattened into the
E86] first 87 elements in the vector. The

existing directive’s value is set to
1, else 0.

Clause [0,1] [E87- The next 36 integer elements are 36

E122] flattened clauses. If the value is 1,

the test case contains that clause.

AddOp [0,n] E123 Number of Add operators.

SubOp [0,n] E124 Number of Subtract operators.

MulOp [0,n] E125 Number of Multiply operators.

DivOp [0,n] E126 Number of divide operators.

CompOp [0,n] E127 Number of compare operators.

BitOp [0,n] E128 Number of bit operators.

LogicOp [0,n] E129 Number of logic operators.

AssignOp [0,n] E130 Number of assign operators.

CombOp [0,n] El131 Number of combined operators
(+=, -=, etc.).

ConstOp [0,n] E132 Number of constant integer and
floating values.

VariableRef| [0,n] E133 Number of distinct variable names.

totalVarRef | [0,n] El134 Total number of variable refer-
ences.

Intel [-2,1] E135 Data race result by the tool. -2

ROMP [-2,1] E136 represents time out. -1 represents

Tsan [-2,1] E137 the segmentation fault. 0

Coderrect [-2,1] E138 represents no data race. 1

LLOV [-2,1] E139 represents the data race.

Ground [0,1] E140 Ground Truth, whether a loop has

Truth a data race or not.

TABLE I: Feature vector’s definition and encoding methods

For the code regions, the
sis mainly considers OpenMP
OMPLoopDirective AST node
the OMPParallelDirective AST node. Some more addi-
tional code regions are also considered. For example
the DRBO74-flush-orig-yes.c, that has only omp
parallel reduction in the source code without involv-
ing a loop.

The Cosine Similarity metric calculates the cosine of the
angle between two non-zero vectors of an inner-product space
and is more suitable for high-dimensional vectors. The Cosine
Similarity is calculated by:

A-B S AB;

0s(f) = ——= =
AllBl VI ATV B
The similarity, range from [-1,1], is used to determine the
similarity of two vectors. If two vectors are more similar, the

Cosine Similarity analy-
parallel loops under the
and basic blocks under

- o

ey




cosine similarity will be closer to 1, and the degree for two
vectors will be closer to 0°. Two vectors with a similarity value
that is farther away from 1 are considered more dissimilar.
There are only five fields (E135 through E139) in the feature
vector which allow negative values. Therefore, it is unlikely
to see negative similarity, representing two vectors pointing to
opposite directions, with the feature vector used by DRB.

IV. TRANSFORMER-BASED SIMILARITY ANALYSIS

In this section, we describe our approach to leverage
transformer-based pretrained code encoders to compute sim-
ilarity scores of OpenMP code regions. First, we introduce
transformer models and transformer-based similarity analysis.
We then describe the challenges and the methodology we use
to investigate the applicability of CodeBERT to our purpose.

A. Transformers

Transformers are deep learning models that adopt the mech-
anism of self-attention to solve tasks in the fields of natural
language processing and computer vision. Since its introduc-
tion in 2017 [21], Transformers have replaced recurrent neural
networks (RNN) for language modeling tasks. Transformers
have also shown the ability to outperform convolutional neural
networks (CNN) for image processing [22], [23] and text-to-
image [24].

The Transformer architecture uses attention [12], a deep-
learning mechanism, where the dot-product of keys and
queries measures the attention that should be given to a
value. Initially the attention mechanism, which is the base
of the transformer architecture, was used as part of RNN
architectures. The nature of the attention mechanism makes
transformers a set-to-set architecture. Usually, positional em-
bedding are added to each token’s embedding for sequence-to-
sequence transformers. In the original transformers [12], both
an encoder stack and a decoder stack are used to produce the
output. However, the architecture can be split into encoder-
only and decoder-only transformers such as: Bidirectional
Encoder Representations from Transformers (BERT) [13], and
Generative Pre-trained Transformer (GPT) [25].

B. Transformer-based Similarity Analysis

Due to the similarity between natural languages and pro-
gramming languages, transformers have been extended to
solve various programming language processing (PLP) tasks.
A recent paper [19] summarizes typical PLP tasks, model
architectures, compiler tools and datasets in order to facilitate
the assembling of machine learning pipelines to solve a given
programming language processing task.

We identify two relevant PLP tasks for our similarity anal-
ysis of OpenMP code regions: clone-detection [26] and code-
search [27]. Based on the prior study [19], we decide to lever-
age CodeBERT [28] a pretrained encoder-only transformers
for our similarity analysis. We select CodeBERT for two main
reasons: tokenization is simple (without additional compiler
tools) and its documentation and tutorials are extensive. Fine-
tuning a pretrained ML model for a new task is a form of
transfer-learning.

As shown in Fig. 3(a), CodeBERT is pretrained with
positive and negative pairs of text-code and code-code from
CodeSearchNet [27]. During this pretraining, CodeBERT is
given tokenized sequences, prefixed by a classifier (CLS)
token and separated by a separator (SEP) token, and returns
a sequence of embeddings. These embeddings are used by
two training tasks: (1) training a multi-layer perceptron (MLP)
to predict whether or not the sequences are related using
the embedding of the CLS token, and (2) masked language
modeling (MLM) provides a self-supervised task for the other
embeddings.

To generate similarity analysis scores, one can use Code-
BERT to process two input code sequences separately and
generate two embeddings. It is a common practice to fine-tune
a pre-trained model with additional datasets or customized
tasks so better results can be obtained. Finally, the embeddings
can be used to compute a cosine similarity as the final
similarity score, as shown in Fig. 3(c).

C. Challenges

Our goal in this paper is to repurpose CodeBERT, a pre-
trained programming language encoder-only transformer, to
evaluate similarities between a pair of C/C++ OpenMP code
regions. This process of using a pretrained model for another
objective is often called transfer learning.

CodeBERT is trained on Python, Java, JavaScript, PHP,
Ruby, and Go to predict semantic similarities between pairs of
text-code and code-code. We believe that this repurposing is
possible because (1) finding semantic similarities require some
understanding of the syntax, and (2) DRB’s C/C++ kernels
include statements (loops, conditionals, expressions, and code
blocks) whose syntax is similar to those of Java, JavaScript,
and PHP.

However, transfer learning is sensitive to changes of the data
distributions in the dataset and modifications to the training ob-
jectives. There are two challenges to the applicability of vanilla
CodeBERT to OpenMP kernel similarity: (1) improving the
ability of CodeBERT to process C/C++, and (2) providing
CodeBERT with some understanding of OpenMP directives. A
common solution to these challenges is to add fine-tune steps
using extra datasets presenting the additional code features
which are not captured in the pre-trained model’s training
dataset.

Another challenge is that for our goal of finding similar
OpenMP code regions, it is difficult to define a ground truth for
both training and evaluation. The reason is that the similarity
score we are interested in should be a real number and
how similar two regions are can be subjective. To address
this challenge, one can apply manual investigation within
the context of concrete tasks such as identifying duplicated
OpenMP code patterns or deciding if a new region should be
added. This method of validating similarity results can be time
and labor-consuming. Another solution is to leverage a similar
third party tool, such as SourcererCC [29], that can provide
quantitative referencing reports. Ultimately, a quantitative and
standardized metric, like the BLEU score used in natural



(a) CodeBERT Pretraining

(b) Fine-tuning

(c) Similarity Analysis
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Fig. 3: Pipelines from left to right: (a) CodeBERT is a pretrained model (called M1 in this paper) to classify if a pair of
text-code and code-code is related or not, (b) fine-tuning CodeBERT using pairs of C/C++ code from POJ or pairs of
OpenMP kernels from DRB, resulting two models named M2 and M3 respectively, and (c) similarity analysis using either
CodeBERT, or one of the two fine-tuned models.

language translation, should be defined to determine the trusted
similarity score.

Finally, transformers have limitations for the length of input
sequences, such as the 512-token limitation in CodeBERT.
Real code regions may have longer sequences to be analyzed.
Fortunately, DRB is designed to minimize code size while
representing OpenMP code patterns. We have found that the
length of the code regions of DRB are mostly loops with
50-175 tokens. For longer regions, we decided to drop code
regions with more than 400 input tokens due to the memory
limitation in the testing platform. These 400 tokens were
tokenized by the tokenizer in sequential order of how the code
is implemented. This is the area that we can look more into
for compressing the input information to be encoded.

D. Fine-Tuning Pre-Trained Transformer Model

As shown in Fig. 3(b), we fine-tune original CodeBERT
(called M1 in this paper) to make it more applicable to
the similarity analysis of C/C++ OpenMP code regions. Two
datasets are used for fine tuning CodeBERT. One is POJ-
104 [30] and the other is DRB. The generated models are
called M2 and M3 respectively as shown in Table II. POJ-
104 provides a large number of C/C++ code to learn more
about these languages while DRB includes some C/C++ but
also OpenMP directives. We can then see how having C/C++
low-level code as a training set and adding additional OpenMP
information would help to encode the embeddings.

The pipeline is used to identify either: pairs of POJ-104
codes found to be similar to generate M2, or pairs of DRB
Kernel found to be similar to generate M3. The positive and
negative pairs are constructed using near duplicate analysis
(NDA). We use SourcererCC, a hand-crafted code clone detec-
tor, to compute syntactic similarities for pairs of codes. In both
cases, any pair of code fragments with SourcererCC similarity
score higher than 80% is marked as positive, whereas the rest
are marked as negative.

V. EXPERIMENTS

Table III lists the details of the experiment platform and
the required software packages. The prerequisites to the ex-
periments include collecting the baseline CodeBERT model,

Label | Model Name Description

M1 Vanilla CodBERT Original pre-trained CodeBERT

M2 POJ-CodeBERT-Syntactic | M1 fine-tuned with POJ syntactic labels
M3 DRB-CodeBRT-Syntactic M2 fine-tuned with DRB syntactic labels

TABLE II: CodeBERT Variants

extracting the OpenMP code regions from DRB C/C++ mi-
crobenchmarks, and applying similarity labels, with Sourcer-
erCC code-clone detection analysis, to all pairs of code within
POJ-104 and DRB extracted OpenMP code regions.

Dell Precision T7920 Workstation
CPU Intel Xeon Gold 6238 CPU 2.10GHz
CPU Cores 2 sockets x 22 physical cores
Main Memory 128 GB (2x64GB) DDR4 ECC Memory
GPU Nvidia Quadro RTX 6000
Device Memory 24 GB
oS Red Hat Enterprise Linux 8.6 (Ootpa)
ML Configuration | Python=3.6.8, Pytorch=1.4.0, Transformers=2.5.0
Datasets POJ-104, DataRaceBench 1.4

TABLE III: Software and Hardware Configurations

A. Training Dataset Construction

We label both POJ-104 and DRB extracted OpenMP dataset
for the fine-tuning step to capture the features with syntac-
tic similarity. SourcererCC is used to determine the Type-
3 similarity for two given code fragments in the dataset
(POJ-104 or DRB). An 80% similarity threshold is specified
in SourcererCC to determine if the pair of code fragments
is considered similar. For POJ-104, there are 64,278 pairs
of codes, out of 1,352,026,000 (222:0;)0 n) possible distinct
pairs, considered similar. We further filter out the source
codes with more than 400 tokens due to the system and
CodeBERT constraints mentioned previously. We construct an
overall 67,816 data samples including dissimilar pairs that are
randomly generated. Similar pairs in the dataset are marked 1
in the label, whereas the rest are marked 0. We are using this
to train the first fine-tuned CodeBERT (M2) and classification
task of whether a pair of codes is syntactically similar or not.

For DRB dataset, we extend support for the Clang-based
tool, OpenMP Extractor [3], to extract 658 OpenMP regions



from DRB C/C++ microbenchmarks. 624 source code regions
are left after filtering out code regions with more than 400
tokens. In the similarity labeling process, 86 pairs of codes,
out of 195,000 (Zi2=41 n) pairs, are considered similar by
SourcererCC.

B. Fine-Tuning for POJ-CodeBERT-Syntactic (M2) and DRB-
CodeBERT-Syntactic (M3)

In this experiment, the CodeBERT base model from the
HuggingFace' Transformer Package is applied to initialize the
CobeBERT model to be fine-tuned. We also reference the
BigCloneBench [31] model structure to have the CodeBERT
with classification downstream tasks implemented with multi-
layer perceptron (MLP).

The POJ-CodeBERT-Syntactic (M2) is generated by fine-
tuning CodeBERT using POJ-104 with C/C++ syntax. We
apply a split of 70% on training, 10% validating, and 20%
testing on total of 67,816 data samples, randomly generated
from POJ-104 labeled dataset, to run two epochs of training
with block size of 400 and learning rate of 5e~5. The training
takes about 40 minutes for each epoch. During the training, we
stored the best F1 score model from the pipeline to prepare for
testing. In addition, the CodeBERT model weights are stored
in order to generate embeddings of the code regions.

A second fine-tune, to generate DRB-CodeBERT-Syntactic
(M3), is then applied using DRB with OpenMP Syntax. We
reused the M2 that was saved and loaded it into CodeBERT.
The training step for the second fine-tune uses 697 data
samples that were randomly generated from the DRB labeled
dataset. The training takes about 1.5 minutes per epoch. The
data split, epoch number, block size and learning rate are the
same as the training in the first fine-tune training. The pipeline
for this step is shown in Fig. 3(b).

The results of the training are shown in Table IV, where we
use the testing to receive the F1 score, Recall, and Precision.
This result shows that our models perform well to understand
the syntactic patterns to predict whether or not a pair of codes
are similar. The small DRB dataset used to fine-tune M3 model
is likely to lead to overfitted results in testing. As we are only
using the encoder from the models to generate the embeddings
to obtain the similarity score, these models are sufficient to
demonstrate the learning for the models.

M2 M3
F1 0.9490 | 1.0000
Recall 0.9563 | 1.0000
Precision | 0.9418 1.0000

TABLE IV: Result of the Fine-Tune Training

C. Feature-based Embedding Similarity

In feature-based embedding, we tokenize the codes from
DRB and pass the tokenized token stream into different
variants of CodeBERT models to generate embeddings for
each code. We can then match the embeddings generated with

Thttps://huggingface.co/

different models, representing the same source code, and apply
cosine similarity to determine the similarity.

D. Comparison & Discussion

To identify similar codes among the OpenMP code regions
in DRB, we exploit heatmaps to identify the highly similar
codes in the collected OpenMP regions. Four groups of
heatmaps, shown in Fig. 4, of similarity among all pairs of
extracted OpenMP regions in DRB are generated by applying
the three variants of the transformer-based similarity analysis,
using the models M1 through M3, and the cosine similarity
model from the previous work. Fig. 4 also presents both
heatmaps of raw similarity data (top row) and the stan-
dardized data (bottom row). The standardized data indicates
that although the vanilla CodeBERT(M1) model reports high
similarity scores for all pairs of code regions in DRB, but
it is still capable to capture differences among the collected
OpenMP code regions. The heatmap from the cosine similarity
analysis represents the results from the previous work: 54%
of the pairs are highly similar (similarity higher than 0.87),
44% are moderately similar (similarity between 0.5 and 0.87)
and only 2.9% are distinct (similarity between -1 and 0.5).
The heatmap generated using the Vanilla CodeBERT (M1)
shows high similarity for most of the code pairs. With POJ-
CodeBERT (M2), the generated heatmap reveals variances in
similarity. This indicates that the fine-tuning with the POJ-104
dataset does improve the analysis by recognizing C/C++ code
patterns. There are only a very few dissimilar pairs shown
in the heatmap with the result generated by DRB-CodeBERT
(M3). The model is based on the M2 model and fine-tuned
with the DRB dataset. The purpose of the second fine-tuning is
to provide OpenMP specific patterns to the training. However,
the small number of code regions collected in the DRB does
not seem to provide adequate code patterns for training data.
The model has seen the whole dataset during its training
session and might not be ideal to apply any meaningful task
with the same dataset.

Due to the difficulty of defining the ground truth of the
real similarity scores within DRB, we leverage again the
SourcererCC tool to provide a similarity report as a reference
in the comparison. The SourcererCC report has significant
differences compared to the results by the transformer-based
approaches. With a low similarity threshold of 10%, we
applied SourcererCC to generate the list of pairs of codes with
similarity higher than the threshold value. Only 196 pairs from
all possible pairs are reported by SourcererCC with at least
10% of similarity.

We manually inspect the similarity reports by applying a
Top-K analysis to select the top three pairs of code regions
that have the highest similarity reported by SourcererCC and
our three transformer-based models (Table V). The selected
top three pairs do not include highly similar code pairs that
are known to the DRB developers, such as these pairs differing
by only fixed or varying arrays. Similarity scores, by cosine
similarity and transformer-based models, are provided in the
table as references. With the manual inspection, DRB0OI,



DRB002, DRB026, DRB029, and DRB030 all have very
similar code regions as shown in Fig. 2. Mostly, they share
similar code patterns but with different dependence types.
Other pairs like (DRB028, DRB035) and (DRB013, DRB104)
are also reported to have highly similar code patterns. DRB028
and DRBO035 differ by only the order of two statements.
But the difference causes different numbers of dependence
pairs. DRBO13 and DRB104 differ by only one OpenMP
barrier directive. All these pairs should be kept since they
represent subtle differences related to OpenMP. High similarity
is reported by all selected similarity analysis for the selected
pairs in Table V.

To evaluate the effectiveness of the models in determining
the similarity for new OpenMP programs, we manually select
two OpenMP parallel regions from the NAS parallel bench-
mark [32] and eight code regions of the Rodinia benchmark
suite [33] (from bfs, find_ellipse, hotspot, kmean_clustering,
lud, nn and pre_euler3d) as the unseen OpenMP programs for
testing. All the selected codes have less than 10% of similarity,
checked by SourcererCC, compared to all extracted code
regions from DRB. Each unseen OpenMP region is compared
against every extracted OpenMP code region from DRB using
the three models aforementioned. Four of the ten OpenMP
code regions from the collected unseen OpenMP dataset are
eliminated from the experiment due to the 400-token constraint
in the experiment platform. For each selected transformer-
based model, we list the three extracted code regions from
the DRB that are identified to have the highest similarity
compared to the unseen OpenMP regions. Table VI lists all
code regions picked by the three transformer-based models.
The M1 model picks exactly the same list for four out of the
six selected unseen OpenMP codes. The selected codes from
the list are small code regions with OpenMP pragma and a
single statement. Code regions picked by the M2 model tend
to have very simple loop structures. Instead, the M3 model,
which is fine-tuned with the DRB dataset, picks code regions
with larger loop structures, with single or nested loops. The
codes picked by M3 are still considered dissimilar after manual
inspection but seem to present a closer loop structure that is
present in the unseen code.

The ranges of top one scores for the six code regions in
Table VI are: 0.13 to 0.3 from M1, 0.72 to 0.9 from M2, and
0.96 to 1 from M3. Given a task to consult these three models
to decide if these unseen code regions should be included into
DRB collection, the M1 model suggests all the six regions as
candidates to DRB collection due to very low similarity found
in existing benchmark suite. Whereas all six code regions
should not be considered to be added into DRB collection
based on the M3 model. Scores reported by M2 model sit
in the middle of results from the other two but its answer
to the task should be closer to the answer from M3 model.
Given all six unseen codes are with low similarity reported
by SourcererCC. M1 model, the vanilla CodeBERT, provides
better suggestions for the unseen OpenMP codes selected in
this experiment.

A manual inspection is applied, following the definition of

the proposed Type-5 similarity, as a more trustworthy ground
truth to determine if the six unseen OpenMP codes should
be included into DRB collection. The result is listed in the
following:

o NPB-IS-1 is likely to be added due to unseen OpenMP
clause: schedule (dynamic)

o NPB-IS-2 will not be considered due to similar pattern
in DRB104-nowait-barrier-orig-no.c.

o rodinia-bfs-1 is likely to be added with a new pattern that
has the if statement inside the parallel loop body.

o rodinia-lud_omp-1 will not be selected due to many
existing code regions with omp simd.

« rodinia-nn_openmp-1 will not be selected for seen code
patterns with both shared and private OpenMP
clauses in DRB181-SmithWaterman-yes.c.

« rodinia-hotspot_openmp-1 is likely to be included due to
a more complex statement in SIMD loop body, and cal-
culation appearing in the loop statement’s test expression.

VI. RELATED WORK

There are many approaches to similarity analysis. Checking
checksum of digital content is simple and effective to identify
the exact duplication but it is insufficient to identify partial
duplication. Fingerprints of digital contents [34] can be used to
identify partial duplication and applied for similarity analysis.
Another effective approach, implemented for SoucererCC,
tokenizes the code blocks of the input code and builds a partial
index for the subset of the tokens in a block. The analysis
iterates through the code blocks and retrieves their candidate
clone blocks from the index to inspect if the similarity score
is higher than a given threshold [29]. However, this approach
is not suitable for the the study with DRB as it reports only
if the similarity passing the threshold and doesn’t provide the
exact similarity score.

Machine learning has become a popular approach to code
similarity analysis. There are various existing similarity anal-
ysis systems based on RNN or transformer models. The
RNN-based models vary in the code representation structures,
code2vec [35] and code2seq [36] utilize abstract syntax trees,
Neural Code Comprehension [37] exploits LLVM intemedi-
ate representation to generate conteXtual flow graph (XFG);
Aroma [38] relies on the construction of simplified parsed tree
for the source code; MISIM [39] uses context-aware seman-
tics structure (CASS) as the representation. The transformer-
based models include CodeBERT [28] and AlphaCode [18].
Compared to the existing similarity analysis using machine
learning, our similarity is a transformer-based approach but
with focus to determine similarity among OpenMP code
regions extracted from DRB.

Large scale dataset, CodeNet [40], uses similarity analysis,
through SourcererCC, to identify near-duplicated codes to
avoid redundant collection. Meanwhile, CodeNet also picks
source code similarity analysis as a task to demonstrate its
usefulness as a dataset for machine learning applied to code-
to-code and code-to-text learning.



Model | Rank Pair DB Score | M1 Score | M2 Score | M3 Score
1 DRBO001-1 | DRB030-1 | 1.0 0.999934 0.999985 0.999992
DB 2 DRBO0O01-1 | DRB029-1 | 1.0 0.999934 0.999985 0.999992
3 DRB028-1 | DRB035-1 1.0 0.999805 0.999541 0.999942
1 DRBO13-1 | DRB104-1 | 0.996063 1.0 1.0 1.0
Ml 2 DRBO00I-1 | DRB026-1 | 0.981769 1.0 1.0 1.0
3 DRB002-1 | DRB026-1 | 0.981769 1.0 1.0 1.0
1 DRBO13-1 | DRB104-1 | 0.996063 1.0 1.0 1.0
M2 2 DRB002-1 | DRB026-1 | 0.981769 1.0 1.0 1.0
3 DRBO00I-1 | DRB026-1 | 0.981769 1.0 1.0 1.0
1 DRBO013-1 | DRB104-1 | 0.996063 1.0 1.0 1.0
M3 2 DRB002-1 | DRB026-1 | 0.981769 1.0 1.0 1.0
3 DRBO00I-1 | DRB026-1 | 0.981769 1.0 1.0 1.0

TABLE V: Top-3 similar pairs and corresponding similarity scores in DRB reported by the similarity analysis models

Cosine Similarity

0

CodeBERT(M1) POJ(M2)

50 75 100 125 100 50

DRB(M3)

75 100 125

Fig. 4: Heatmaps of similarity for DataRaceBench using cosine similarity, M1, M2 and M3 models.

Top row: raw similarity data; bottom row: standardized data

Topl Top2 Top3

Unseen OMP code M M2 M3 MI M2 M3 M M2 M3
NPBIS-1 DRB143-2 | DRB086-1 | DRB0922 | DRBI42-2 | DRB083-1 | DRB0842 | DRBI43-1 | DRB0S2-1 | DRB09I-2
NPB1S2 DRBI43-2 | DRBO83-1 | DRBI37-1 | DRBI42-2 | DRB082-1 | DRBI38-1 | DRBI42-1 | DRB0S8-1 | DRB095-1
Todinia-bls-T DRBI43-2 | DRB094-1 | DRBISI-I | DRBI42-2 | DRB068-1 | DRBI59-3 | DRBI43-1 | DRB0S8-1 | DRB0582
rodinia-Tud_omp-1 DRBI43-2 | DRBO83-1 | DRBI70-1 | DRBI42-2 | DRB08S-1 | DRB041-0 | DRBI43-1 | DRB0S6-1 | DRBI4I-2
rodinia-m_openmp-1 DRB094-2 | DRB041-31 | DRBO41-20 | DRBI43-2 | DRB094-1 | DRB041-8 | DRBI42-2 | DRBI47-1 | DRBO41-25
Todinia-hotspot_openmp-1 | DRB0942 | DRBO86-1 | DRBO41-25 | DRB0962 | DRBOS3-1 | DRBO41-8 | DRBI42-2 | DRBOS2-1 | DRBO4I-15

TABLE VI: Top-K Similar OpenMP Regions in DRB for unseen OpenMP codes

VII. CONCLUSION

In this paper, we present our initial work to leverage deep-
learning transformers to conduct similarity analysis of DRB.
Our experiments show that fine-tuning pretrained transformers
are essential to adapt them for the domain of parallel com-
puting due to new syntax and semantics of parallel language
constructs such as those of OpenMP. Although transformers
can alleviate the burden of manually picking code features,
labeled datasets with suitable training tasks are hard to find.
Another major limitation is that the input sequences of the
transformer models have to fit into a small length, such as 512.
This limits their applicability to real applications using large
code regions. It is challenging to evaluate the effectiveness of a

similarity analysis without a quantitative and standard metric.
For Type-3 and the Type-5 similarity proposed in this paper,
defining the ground truth and developing a standard metric
for evaluation can greatly assist the future work in developing
similarity analysis.

Future work will experiment with more methods of fine-
tuning CodeBERT using training datasets with more OpenMP
semantics. We will also use the analysis pipelines to scan
more open source OpenMP codes, including those written in
Fortran, to find new code patterns to be added into DRB.
Second, we will also look into how to enable transformers
to analyze large code regions. And finally, we will survey and
design quantitative metric for the similarity analysis.
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